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sr-quasitriangular group-cograded multiplier Hopf algebras

Yang Tao Wang Shuanhong

(Department of Mathematics, Southeast University, Nanjing 211189, China)

Abstract: Let G be a group and (A, B) be a pair of multiplier Hopf algebras, where B is regular G-cograded. Let 77 be a crossing
action of Gon B, D" =A“? «B =@ D; with D7 =A*® OCBF is the Drinfeld double of the pair (A, B), and then the deformation D™
becomes a multiplier Hopf algebra. B®A can be considered as a subalgebra of M( D" @D"), the image of element b@a in BQA is (1
xcb)®(accl) in M(D"®D™). LetW = 2 W, € M(B ® A) be a mr-canonical multiplier for the pair (A, B) with W, € M( B, ®A)

reG

for all @ € G. The image of W in M(D" ®D")is a mr-quasitriangular structure over D".
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hroughout this paper, we will consider associative algebras over the complex number field C, with or without identity,

but with a non-degenerate product. For algebra A with a non-degenerate product, it is possible to construct the multipli-
er algebra M(A). M(A) is an algebra with identity such that A sits in M(A) as an essential two-sided ideal. The multiplier
algebra M(A) can also be characterized as the largest algebra with identity containing A as an essential ideal. If A already
has an identity, the product is obviously non-degenerate and M(A) = A. For more details about the concept of the multiplier
algebra of an algebra, we can refer to Ref. [1].

In 1994, Van Daele'" introduced a much larger class of multiplier Hopf algebras, generalizing the ordinary Hopf alge-
bras. Multiplier Hopf algebra A is an associative algebra over C, with or without identity, but with a non-degenerate product
and with an algebraic homomorphism coproduct A such that the linear maps 7,, 7, e End(A®A) defined by 7, (a®b) =
A(a)(1®b), T,(a®b) =(a@1)A(b) for all a, be A, are bijective. If also A satisfies A(A) (AR®1) CARA and (1 RQA)
A(A) CAR®A, then (A, A)is called regular, and if (A, A) has a non-zero integral, (A, A)is said to be an algebraic quan-
tum group. Multiplier Hopf algebras have become a power tool to treat the dual theory of infinite dimensional co-Frobenius
Hopf algebras'” .

Recently, the concept of group-cograded multiplier Hopf algebra was introduced in Ref. [3] as a generalization of Hopf
group-coalgebras introduced in Ref. [4]. Let (A, A) be a multiplier Hopf algebra and G a group. Assume that there is a
family of (non-trivial) subalgebras (A,),_;of A sothat1) A=@®,_;A, with A /A =0 whenever p, g G and p7#q; and 2)
A(A,)(1QA) =A QA and (A,Q1)A(A,) =A,QA, for all p, ge G. Then (A, A) is called a G-cograded multiplier
Hopf algebra. The theory of group-cograded multiplier Hopf algebras was further developed in Refs. [5 —7]. In particular in
Ref. [6], the authors studied quasitriangular group-cograded multiplier Hopf algebras in the following sense: a G-cograded

multiplier Hopf algebra with a crossing action ¢ is called a 7r-quasitriangular if there is a multiplier R = 2 R, ,with R

o BeG
e M(A,®A,) so that (£,®&,)(R) =R, (A®i)(R) =R, Ry, (i®A)(R) =R, R,, and RA(a) = (A)*"(a)R for all pe G
and a e A, where A(a)(1®a’) = (£, ®)(A(a)(1®a’)) forallacA and a’' €A,

B B

1 Deformation of the Product by a 7-Twisting Element

We first give the definition of a 77-twisting element as follows.
Definition 1 Let A be G-cograded. A 7r-invertible multiplier element R = 2 R

P qeG

with R, & M(A,®A,) is a 7-twist-

P q
ing element if

DY (R )i, ®A, )(R, ) = X (R, )0u((A, ;@ i) (R, )

a B, yeG a B, yeG
2) Forallpe G, (®i,)(R, ) =1, =(i,®e)(R, ,).
Example 1 Let A be a 7-quasitriangular G-cograded multiplier Hopf algebra, and then R is a #-twisting element. In-
deed,

D (R )n((i, ®4, )(R, ;) = ¥ (1,®R, )((i, ®4, )(R, ;) =

a B, yeG a B, yeG
2 L0 ® oy )™ R ) O R ) = ) L8y ® mp) (U @ Apf )R ) (L O R, ) =
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Z (i, ® iﬁ ® Wﬁ")((Ra.ﬁ)IZ(Ra‘ ﬁyp")u)(Rﬁ,y)zs =

a B, yeG
Z (Ru,B)IZ((i,B®WB")(Ru,ﬁyB")B)(RB,y)23 = z (Ru,/,g)lz((Amﬁ ®ly)(Ra37))
a B, yeG a B, yeG

We now suppose that (A, B) is a pair of multiplier Hopf algebras so that B is G-cograded with a 7r-twisting element R.
By Ref. [8], we have a new multiplication on A by using the above 7r-twisting element R as follows:

my(a®a’) =m,((a®a') <|R)

This new algebra with a non-degenerate product will be denoted by A,. Then we have the following propositions.
Proposition 1 With the notation above, we obtain

(a-a’, b) =(a®a’, R, A, ;(b))

forallaeA,, a'eAjand be A, And Ay is a G-graded algebra and 1, € M(A,) remains the unit in M(A).

Proof It follows from Refs. [7 —8] that A, is a G-graded algebra.

To see that 1, € M(A,) remains the unit in M(A,), we use that <1A,, b,) =&(b,) for all b, € B,. In fact, for all b, b’
€B,, peGandaeA, with b'I>a=a, we obtain (1, +a, b) =(1, ®a, R, A, ,(b)(1QD")) =(a, (¢®i)(R, A, (D) -
(1®b")) =(a, bb') =(a, b)

As a consequence, 1, ca=aforallac A, and pe G. Similarly, a-1, =aforallaeA, and p e G.

Remark 1 Definition 1 yields that

> (G, ®A, DR, D(RS Doy = D (A, , ®i)(Ry )R ) 1,

a B, yeG a, BeG

The 7-twisting element R~ = 2 Rpf'q can be used to deform the product of A to obtain m, (a®a’) = mA(R'I >(a®

P qeG
a')) for all a, a’ e A. The algebra A, is also a G-graded algebra and has properties similar to those of A,.

Proposition 2 Let (A, B) be a pair of multiplier Hopf algebra so that B is G-cograded. LetR = 2 R,  ,with R, e

P qeG

M(A,®A,) be a r-twisting element in the sense of definition 1, and set A, = (A, m,). Then
1) A, is again a left B-module algebra for action B> A associated to the pair (A, B) so that b[>(a-a’) = mg(4, ,(b) >
(a®a')) forallacA,, a’' eAjand be A,

2) If furthermore R = Z R, ,is a generalized R-matrix providing B = @

p. qeG
we have @ A, is also a right B“"-module algebra so that (a+a’) <lb=m,((a®a’) <1(Bq3a44 DT(b)) forallaeA, a' e
Agand beA; (2 The non-commutativity in A, is controlled as

»eoB, with a 7r-quasitriangular structure, then

my(a®a’) =my((7 ®i) (o, ((R, ;) >(a'®a) (@) (R ) =
mR(R/;,IB"a.BD(i®’n-/’37‘)(a,®a) Q(i®77-/3")(0-% BR"@B))

where ¢, , denotes the flip map on B,&®B,, extended to M(B,&QB,).

2 s-Twisting Elements Based on the Drinfeld Double

Let (A, B) be a multiplier Hopf algebra pair so that B is G-cograded. Let 7r be an admissible action of G on B. Put the
G-cograded Drinfeld double D™ = @ _,;D7 with D] =A*" oc B_. In general, we consider the situation when D" is r-quasitri-
angular.

By Ref. [7], for any p e G, we can define the linear map 7, on A by the formula (7 /(a), b) =(a, m,.(b)) for all a
€A and b e B. Clearly 7, is a linear isomorphism such that (7r,) e ,-- From the definition of 7',, it easily follows
that 77/, is an algebraic isomorphism on A, A(7)(a)) = (7, &) A(a) and 77, =77, for all p, geG.

We start with a canonical multiplier W in M(A®B) for the pair (A, B) defined in Ref. [4]. Let D" = A°” oc B denote the
Drinfeld double of the pair (A, B) with B being G-cograded. We prove that the embedding of W in M(D" ® D) =

H M(D; ® DZ) is a generalized R-matrix for D".
B
Definition 2 Let (A, B) be a multiplier Hopf algebra pair so that B is G-cograded. An invertible multiplier W = Z W,

inM(B ® A) with W, € M(B, ® A) is called a 7-canonical multiplier if

1) (m,®m,) (W) =W for all p e G;

2) {W,, bQa) ={a,, b,), forallacA and be B, where a_ is the a-th component of a.

Observe that we use the extension of the non-degenerate bilinear from (BRA, BRA) to {M(BRA), BRA). If there is
a gr-canonical multiplier in M( B&®A), then it is unique.

Example 2 1) In the case that B is G-cograded with finite-dimensional components B for all « € G, consider the dual
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G-graded Hopf algebra B’ and the natural pair ( B’, B). The canonical multiplier in M ( B ® B') is given by
W = 2 e ®f,, where {e,} and {f,} are dual bases of B, and B,

2) Consider the pair (k(G), k[ G] ), where K[ G] is the group algebra for group G and K( G) is the multiplier Hopf alge-
bra of functions with finite support on G. The canonical multiplier W e M(k[ G] ®k(G)) is given by W = 2 W, = Z u,

geG geG
X8, .

Proposition 3 Take the notation as above. For an invertible multiplier W e M(B®A) with W e M(B,&®A) for all a e
G, the following are equivalent:

1) (W, b®Qa) =(a,, b ) forallacA and be B;

2) ({a, -)®i)(W,) =a,forall aecA;

3) (iz;,,®< ., b))(W,) =b, for all beB.

Proof For all a e A, b e B, then there exist a’ € A and b’ € B such that b =a'>b and a = b'>a, (a, (iﬂp®< .,
b)) (W,)) ={a, (i, ®{-, b))(W))b") =(a, (i, @+, b))(W,(b'®a’)) =(W,(b'®da"), b®a) =(W,, b®a) =
(a,, b,)=(a, b,).

By using this equation, the equivalence between 1) and 3) is clear. The one between 1) and 2) can be proven in a similar
way.

Proposition 4 Let W = 2 W, € M(B ® A) be a 7-canonical multiplier for the pair (A, B) with W, e M(B,®A) for

all « € G. Then we obtain that W is a sr-copairing in the following sense:

D (7,&7,) (W) =W for all pe G.

2) (A, ®i) (W) =W W, foralla, Be G in M(B,®B,®A); (i, ®A,)(W,) =W, W, forallaeGin M(B,RA®

A).
3) (i, ®e,)(W,) =1, in M(B,) for any pe G; (&, ®i,)(W,) =1,in M(A,).
Proof 1)It is obvious; 2) For any @, Be G, we note that since A, &1, is a non-degenerate homomorphism on B, ®
A, itextends B, ;®A to M(B,,®A) in a natural way. For a multiplier M e M(B,&®B,®A) anda,eA,, a',eA,, one can
define the multiplier({a®a’, *) ®i,)(M) e M(A) in a similar way as introduced in Ref. [4].

Now, we compute

((a,®ay, ) ®i,) (A, ®i)(W,) =((a,a5 ) ®i)(W,) =a,a

({a,®ay, +)®i)(W; W) =a, )Qi)W,(i,®{a,, *))W,=a,a,

Then (A, ®i,)(W,) =W, W/ forall a, B G in M(B,®B,®A) follows.
For (i, ®A,)(W,) =W,/ W_ forall ¢ e G in M(B,®AR®A), W, e M(B ,R®A), and then (i, ®A,)(W,) e M(B,RA®
A). For all b, b’ e B,

(iy, @+, bRD')) (iy ®A,)(W,) =(iy ®(-, bb'))(W,) =(bb"),=b,b,
(i ® (=, BRD' ) (W W) =(iy @+, b)) (W) (iy ®(+, b'))(W,) =b.b!,

3) From 2) we obtain that (A, ,,®i D(W,) = Wf W,zf. If we apply the extension of the non-degenerate homomorphism ¢,
®i, i, on both sides of this equation, we obtain that (¢, ®i,) W, =1, . The proof of the other counitary property is simi-
lar.

We note that D" = A°” o B with the commultiplication A(a o b) =A“"(a)A(b). We now look how a 7-canonical multi-
plier We M(B®A) with W, e M(B_ ®A) for all a € G relates to the product of D”. Recall that the non-degenerate algebra-
ic embeddings of A and B, in M(D]) give rise to non-degenerate algebraic embeddings of AQA in M(AQD;), of B,&®B,
in M(D; ®B,) and of B,®A in M(D; ®A), respectively, and M(B,QD;) for any p e G. Now, we have the following
proposition.

Proposition 5 Take the notations as above. Then we have that

1) WA (a) =((i®m)A(a) W, in M(D" ®A);

2) WA, (b)) =[(i®m, ) (4, )" (BD)IW=(A, ,-) ()W in M(BRD"), forall p, ge G, acA and beB,.

A sketch of the proof following Ref. [8], we only prove part 1). Part 2) can be verified in a similar way. For part 1),
it suffices to show that in the M(D"),

(i,®(+, b)) (WA (a,)((xcy) ®Ly,,)) =(i,®(+, b)) (((1Q7)A,(a))W,((xcy) ®1,,))

forallb,eB,, YpeG, a,eA,, YgeGandxeA, yeB.

Theorem 1 Let (A, B) be a pair of multiplier Hopf algebras and assume that B is a regular G-cograded multiplier Hopf
algebra. Let 77 be a crossing action of G on B. D" = A*” o« B is the Drinfeld double ', then the deformation D™ becomes a
multiplier Hopf algebra, with the multiplication, the coproduct, the counit and the antipode in the following way:

o (axhb)(a' «cb') =(m,®@m,)(i,QTR®i,)(a®b®a'®b"), where T(b Q@ a') = Y (7, (b,)>a’<AS" (b)) ® b,
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foralla’ e Aand b € B, ;

° Ea,ﬁ(ambuﬁ) :((77',;®7TB)®i1))ﬁmﬂ(aocbub,): =ﬁ°°"(a)AmB(baﬁ) for all ae A and b, e B ;

oz=c
o S(acch)) =T(S(b) @m/(S'(a))) forallac A and b,  B,.

Proof First we check the coassociativity of the new coproduct: (jm B®i)j oy = (i ®3B7 y)jm By

Indeed,

(A, ,®i)A,, (awxb,) =(A, ,@)((7,@)A(a)Ab)) = (((7,@)A) 7, @) A™(a) (ARi)A(b) =
(m,, @i®m, QiQID (A ®)A™(a) (AR A(b))

(i®A4, JA, ,(awb,) =(i®4, )((m, ®)A(a)A(b)) =
(775, @ (7, QA A™(a) (I®A) A(D) = (1, Qi® 7, QiQiIQI) ((IR®A™)A™ (a) (I®A)A(D))

It is easy to obtain (§®i)je_ Jacxb,) =axhb, and (i®§)jm Jaxh) =acxh,.
The next is to rectify the antipode.

§(ﬂocb,,) =T(S(b) @, (S (a))) ={m (S (@) ), ST (S(b)3))(m (S (@), m,(S(b))) -
(m (87 (@) o = S(b) o) ={m/(S " (ag)), ST (S(b,))){m/ (S (ay)), m,(S(by))) *
(W;(Sfl(am))ocS(b(z))) =<7Tp’(Sil(a(3))), b(1)><a(1)’ b(3)>(77,,,(571(a(2)))Ocs(bu)))

It is not difficult to show that S defined as above is an antimorphism.

Finally, we can obtain that m(S®i)A, , (axb,) =e(a)e(b,) (1, o« 1,5,) and m(i®S)A, ,(axh,) =g(a)e(b,) -
( 1M(A) oc 1M(B,,) ) .

Recall that BRA can be considered as a subalgebra of M(D”" ®D"). The elements b&a are now denoted as (1 < b) Q(a
oc1). In the theorem below we consider the 7r-canonical multiplier W e M(B®A) as a multiplier in M(D” @ D") and we
prove that W provides a 7r-quasitriangular structure. A similar conclusion is also given briefly in Ref. [6], but we do not
need the additional assumption in this paper.

Theorem 2 Let W = z W, € M(B ® A) be a mr-canonical multiplier for the pair (A, B) with W, e M(B,®A) for all

aeG. Let D" =A*" B = @ ,D7 with D] = A" o« B, be the Drinfeld double of the pair (A, B). The image of W in
M(D"@D7) is a sr-quasitriangular structure over D”.

Proof We still denote the image of W in M( D™ @ D”) by the symbol W. Since W is invertible in M( B&®A), it is also in-
vertible in M(D"®D"). For all ac A, b' e B,

1) Let 7, =77;®77P. Then it is obvious that (n,&®n,) (W) =W.

2) Recall that the coproduct A, is given by the formula A,(ac<b) =A5*(a)A,(b) in M(D" ®D"). Hence, we obtain in
M(D"®D"®D™) that

(4, ,®i) (1) ®(as1)) =A(1)A, ,(b,) ®(ax1) =(4, ,®0) (b, Ba)
(i, ®A,) ((1ecb) ®(accl)) =(1ocb) ®A(a)Ay(1) = (i,RA") (bR a)
From the above two formulae we have
(A, ,®i,) (W) = (A, ,@i)(W,) =WE W2, (i,®A4,)(W,) = (i, @A) (W) = W" w"
3) We have that, for any a € A and b € B,
WIA, ,(a < by)] = WA (@A, ,(b,) = D WA (@A, ,(b,) =Y ((i®7)A,(a)WA, ,(b,) =
((l ® W;;"qB)AA(a)(i ® 773"%3)(&3_ ﬁ"a’g) Cop(b))WB"ag = (l ® (77-;;‘(,3 ® Wﬁ"qg))(AA(a)(Aﬁ, B"O(B) Cop(b))Wﬁ"ug =
(i ® (7 @ myp)) (By 4oy " (a o b) )W = ([(Ty @ Tyy) @ (B, o) 1°7(a e H)YW =
(A, o)™ (a = D)W

Example 3 Let A=, A, be a finite type Hopf group-coalgebra, the reduced dual multiplier Hopf algebra which is
given by the Hopf algebra A" =@, _;(A,)’. Let {f,}C(A,)  and {e,} CA, be dual basis. W = Z e, ®f.1s a 7r-canoni-

cal multiplier for the pair (A", A). Let D" =(A")*“" <A = @ D} with D7 =(A")“" A be the Drinfeld double of the

Pp

pair (A*, A). The image of W in M(D" ®D") is a r-quasitriangular structure over D”'".
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