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Real edge spans of distance two labelings of graphs
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Abstract: An L(j, k) -labeling of a graph G is an assignment of
nonnegative integers to the vertices of G such that adjacent
vertices receive integers which are at least j apart, and vertices at
distance two receive integers which are at least k apart. Given an
L(j, k)-labeling f of G, define the L(j, k) edge span of f,
B,i(G. /) =max{[flx) -f(y) |: {x,y} e E(G)}. The L(j, k)
edge span of G, B, ,(G) is min B, (G, f), where the minimum
runs over all L(j, k) -labelings f of G. The real L(j, k) -labeling of
a graph G is a generalization of the L(j, k)-labeling. It is an
assignment of nonnegative real numbers to the vertices of G
satisfying the same distance one and distance two conditions. The
real L(j, k) edge span of a graph G is defined accordingly, and is
denoted by B,‘, (G). This paper investigates some properties of
the L(j, k) edge span and the real L(j, k) edge span of graphs,
and completely determines the edge spans of cycles and complete
t-partite graphs.

Key words: L(j, k)-labeling; real L(j, k)-labeling; L(j, k) edge
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he L(2, 1)-labeling, first introduced by Griggs and
Yeh!", arose from a variation of the frequency assign-

ment problem proposed by Hale'”. For a given graph G, an
L(2, 1)-labeling of G is defined as a function f from V(G)
to nonnegative integers such that | flu) —f(v) |=2 if u and
v are adjacent, and | f(u) —f(v) | =1 if u and v are of dis-
tance two. The span of f is the difference between the lar-
gest and the smallest labels assigned by f. The minimum
span over all L(2, 1)-labelings of G, denoted by A(G), is
called the L(2, 1)-labeling number of G. Any L(2, 1)-
labeling of G with a span A(G) is called a A-labeling of G.

Georges and Mauro"”' generalized the L(2, 1)-labeling
problem. For any graph G and nonnegative integers j and k
with j=k, a nonnegative integer assignment L to the verti-
ces of G is called an L(j, k)-labeling if and only if

1) |L(v) = L(w) |=j if v and w are adjacent;

2) \L( v) — L(w) \Bk if v and w are of distance two.

As before, the span of L is the difference between its lar-
gest and the smallest assigned labels. The minimum span
over all L(j, k)-labelings of G, denoted by A, ,(G), is
called the L(j, k) -labeling number of G. Any L(j, k) -labe-
ling of G with a span A, ,(G) is called a A, ,-labeling of G.

In investigating the L(j, k) -labeling and L(j, k) edge span
of graphs, we usually suppose that the minimum labels of
any L(j, k)-labelings of a graph G are zero. In this way,
the L(j, k) -labeling number of a graph G is namely the max-
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imum label of some A, ,-labeling of G.

Motivated by the frequency assignment problem, the
L(2, 1)-labeling numbers of graphs have been studied ex-
tensively in the past decade'" **. And, there are some pa-
pers about L(d, 1)-labeling numbers of graphs'”. L(j, k)-
labelings for j =k were also investigated in Refs. [3, 8].
Recently, people have begun to study L(j, k) -labelings of
graphs for j<k"'.

Suppose that f is an L(j, k) -labeling of a graph G. The
L(j, k) edge span of f, denoted by B,,(G, f), equals the
value max { | (x) —f(») |: {x,y} e E(G)}. The L(j, k)
edge span of a graph G, denoted by B3, ,(G), is defined as
min B,;.(G, f), where the minimum runs over all L(j, k) -la-
belings f of G. Note that an L(j, k) -labeling of a graph G
with the minimum edge span may not be a A, ,-labeling of G
and a A, -labeling of G may not have the minimum edge
span. For example, let j > k and v,v,v, be a path P of
length 2. The labeling of P assigning the labels 0, j,2j to
v,, v, and v,, respectively, obviously has the minimum L(j,
k)edge span j. But it is not a A, -labeling of P. The labe-
ling of P assigning j,0,j + k to v,, v, and v,, respectively,
is a A, -labeling of P. However, its edge span is greater
than j.

It is obvious that 8, ,(G) <A, ,(G) for any graph G. If G
is a complete graph, then 8, ,(G) =, ,(G). However, for
many graphs, the L(j, k) edge spans might be far less than
the L(j, k) -labeling numbers.

The L(2, 1)edge span of a graph was first introduced by
Yeh'"”. The author determined the L(2, 1) edge spans of
cycles, trees, complete f-partite graphs, triangular lattices
and square lattices. Feng and Song'"' investigated the
L(d, 1) edge span of some graphs. Niu and Lin'"”' gave
L(j, k) edge spans of trees and the Cartesian product of two
paths.

The above mentioned L(j, k) -labelings are integral. In re-
cent years, Griggs and Jin investigated real L(j, k) -labelings
of some graphs'"™. A real L(j, k)-labeling of a graph G,
where j and k are nonnegative real numbers, is a function f
from V(G) to nonnegative real numbers satisfying the fol-
lowing two conditions:

1) |A(v) —fiw) |=jif v and w are adjacent;

2) |f(v) —f(w) | =k if v and w are of distance two.
The span of fis the difference between its largest and small-
est assigned labels. The minimum span over all real L(}j, k) -
labelings of G, denoted by ){_ﬁ (G), 1is called the real L(j,
k) -labeling number of G. If the span of f is X_f, (G), then
we say that fis a A ;«-labeling of G. The real L(j, k) edge
span of f, denoted by ﬁ'j‘k(G, f), equals the value max
(A = 2 {x ) € E(G) ). The real L(j, k) edge
span of G, denoted by B, ,(G), is min B, (G, f), where the
minimum runs over all real L(j, k) -labelings f of G.

In general, we also suppose that the minimum labels of
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any real L(j, k) -labelings of a graph G are zero. If j and k
are nonnegative integers, then A i (G) =2,,(G) and
BM(G) <p,,(G) since any L(j, k) -labeling is also a real
L(j, k) -labeling.

The following are some known results about edge spans of
L(j, k) -labelings.

Theorem 1"  Let C, be a cycle of order n. Then
B, (C,) =3 for n=4 and B, (C,) =4.

Theorem 2" Let K=K, , , be a complete t-partite
graph, where n, =n,=...=n,. Then

n]
B (K) :(TLL"Z R R a )

Theorem 3'*'  Let T be a tree with the maximum degree
A=2. Let j and k be two nonnegative integers. Then

j+((§1_1)k

A

2j=k or 2j <k and A is odd
B, (T) =

2j <k and A is even

Theorem 4"

gers.
1) If m,n=3, then

Let m, n, j and k be nonnegative inte-

j+k

2j=k
Bf.k(PmDPn) = {’(:;](—‘
2

2j <k

2) B, (P,LOP,) =j +k for n=2.

In this paper, integral L (j, k)-labeling and integral
L(j, k) edge span are namely called as L(j, k) -labeling and
L(j, k) edge span, respectively. Without falling into confu-
sion, we sometimes say edge span instead of L(j, k) edge
span or real L(j, k) edge span for short. This paper investi-
gates some properties of the L(j, k) edge span and the real
L(j, k) edge span of graphs, and completely determines the
L(j, k) edge spans and real L(j, k) edge spans of cycles for j
=k and j <k, and of the complete ¢-partite graphs for j=k.

1 General Properties

It is obvious that the restriction of a real L(j, k) -labeling
of G on an induced subgraph H of G is also a real L(j, k)-
labeling of H. Furthermore, if j=k, then the restriction of
a real L(j, k) -labeling of G on any subgraph H of G is also a
real L(j, k)-labeling of H. These properties also hold for
L(j, k) -labelings. However, these are not true if j is less
than k and H is not an induced subgraph of G. Thus, we
have the following two theorems.

Theorem 5 1) Let j and k be two nonnegative real num-
bers. Let H be a subgraph of G. If H is an induced sub-
graph of G or j=k, then

B..(H) <min{B,,(G), A, (H)}
L6 =max{B, (G), &, ,(H)}

2) Let j and k be two nonnegative integers. Let H be a
subgraph of G. If H is an induced subgraph of G or j=k,
then

,lg_f,k(H) $m1n{ﬁ,k(G), A,k(m }
)\j,k(G) BmaX{B_/,k(G) s /\j,k(m }

Theorem 6 If j=k, then

1) ﬁjﬁk(G) Bmax{ﬁjyk(H) | H is a subgraph of G};

2) B;,(G) =zmax{g; ,(H) | H is a subgraph of G}.
Theorem 7 For any two nonnegative integers j and k,

B.x(G) =[B,.(G) |
Proof Suppose that fis a real L(j, k) -labeling of G and

Ei.k(G) =,é_,.7k(G,f). Define f' (v) = Lf( v)J for all v e
V(G). For any two vertices u and v of G, if flu) —f(v) =
Jo then f'(u) ~f(v) = fwy |- Liowy [zl -y =5
Similarly, if f(u) —f(v) =k, then f'(u) —f (v) =k. So f'
is an L(j, k)-labeling of G. For any {u, v} € E(G),

G -F o L= | | = ] < T -fon | <

[B,.(G) |. So, B,,(G)<[B,,(G)|. On the other hand,
B, (G) BBM( G) since any integral L(j, k) -labeling is also
areal L(j, k)-labeling. Note that 8, , (G) is an integer.

Thus 8, ,(G) =|8,,(G) |. )

For nonnegative integers j and k, if B,,(G) is deter-
mined, then B, ,(G) is also known. But the converse may
not be true. And so, it is more meaningful to determine
B,.(G) than 8, (G).

By a slight modification of the proof of theorems 3 and 4
in Ref. [12], we can get the proof of the following two
theorems. And theorems 3 and 4 can be regarded as the cor-
ollary of theorems 8 and 9.

Theorem 8 Let 7 be a tree with the maximum degree A
=2. Letj and k be two nonnegative real numbers. Then

j+((%—‘—1)k
a-l

2j = kor2j <kandA is odd
ﬁjk(T) = {

2j < k and A is even

Theorem 9 Let j and k be two nonnegative real num-
bers.
1If m,n=3, then

j+k 2j=k
IB.i,k(PmDPn) = {32k 2] <k

2) Ej,k(PZDPn) =j+k for n=2.

Theorem 10 Suppose that G is a graph with maximum
degree A=1. Let j, k, j', k' be nonnegative real numbers.

@ If j=j" and k=K', then 3, (G) =B, ,.(G);

@ If j=k, then f,,(G) = + ( (%} - l)k.

Proof If j=j' and k=k’, then a real L(j, k) -labeling of
G is also a real L(j', k') -labeling of G. Thus (D) holds.

Any graph G with the maximum degree A contains a sub-

graph K, ,. So we obtain ﬁAM( G =j+ ( (%W -1 )k by theo-

rem 6 and theorem 8.
For an L(j, k) edge span of a graph G, we can directly
obtain the similar results of theorem 10 by theorem 7
Theorem 10 indicates that, the greater the restrictions of
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distance conditions, the larger the edge spans of a graph G.
It also gives a general lower bound about real L(j, k) edge
span of a graph G in the case j=k. However, theorem 10
(2 may not be true in the case j < k. For instance, the real
L(j, k) edge span of cycle C, is 2j. If j < k, then j +
( (%W —l)k =j+k>2j and it is not a lower bound.

What graphs on earth have the edge spans that obtain the
lower bound of theorem 10 (2)? It is a very interesting prob-
lem to characterize all graphs with their real L(j, k) edge
spans which are just the lower bound.

Theorem 11 (D For nonnegative real numbers j, k and
positive real numbers c, ,éj (G) = BAU‘ «(G)/c;

(2 For nonnegative integers j, k and positive integers c,

5.a(G)
Bu(0) =[Pt
Proof 1) Suppose that f is a real L(j, k) -labeling of G
and B,,(G) =B,,(G, f). Define f, (v) = c¢f(v) for all
ve V(G). It is evident that f, is a real L(cj, ck) -labeling of
R A 1 4 1 4
G. So Bj,k( G) =Bj,k( G’f) = 730],01(( G’fl) 2760“1(( G).

On the other hand, suppose that f is a real L(cj, ck)-
labeling of G and B, ., (G) =B, . (G, f). Define f,(v) =
flv)/c for all ve V(G). It follows that f, is a real L(j, k) -

labeling of G. So f3,,(G) <B,,(G. f,) = w =
'37”“*6( G). Thus, 3, ,(G) :.37(,-,(:/;( G).

2) Similar to 1), we can prove that 8,, (G) =
B,

Now suppose that f is an L( ¢j, ck)-labeling of G and
Bou(G) =B, 4 (G, ). Define f(v) = L@J for all v e

V(G). For any two vertices u, ve V(G),

cj, then f'(u) —f'(v) =

J. Similarly, if f(u) —f(v) Bck, then f'(u) —f'(v) =k. So

f is an L(j, k) -labeling of G. For any {u, v} € E(G),

Pl —f | = LMJ-LMJ‘SW(”) —f) |12
c c

c

if fCu) - f(v) =
A | |0 || fw) =f0) |
|| 00| | A0 A0 |

. S0 B, (G) =
ﬂ(,(k( G)

al(G a.a(G
(BCJ,LC( )1 IVB/ C( )—|

. Notice that

k(G
[fasl @)

Hence,

(G
<p,.(6) <[Pl D]

B,.(G) is an integer. It follows that 8, ,(G) =

The following corollary follows from theorem 10 (D and
theorem 11 (D).
Corollary 1 For real numbers j, k, j’ and k',

'/

1) 1f L p k,, then k'8, ,(G) =k, .(G);
2)If ’ <1 then j'B,,(G) =) B, (G):

Tk
3)Ifj>2k, then B,,(G) =k B, ,(G);

4)If j<2k, then Bj'k(G)B%BZTI(G).

Let j and k be two nonnegative real numbers. If k is posi-
tive, then, by theorem 11, we obtain Bj,k( G) = k,ém (G)

where x =j/k. Therefore, in this case, it suffices to deter-
mine ,ém(G) for any nonnegative real number x.

2  Cycles

Let C, =v,v,...v, be a cycle on n vertices (n=3).
{(vi,v,}, {v,,vs}, ..., {v,,v,} are n edges of C,. In this
section, we consider real L(j, k) edge spans and L(j, k)
edge spans of C,. Note that if one of the two numbers j and
kis 0, then it is trivial to obtain 3, ,(C,) and §3, ,(C,). In
fact,

_[2) n is odd
Bin(C) = {j n is even
0 n=3
' = n 1s the multiple o
Bo..(C) k is th Itiple of 4
2k  others

So we only need to consider the case that j and k are posi-
tive. In the following part of this paper, by investigating the
L(x,1) edge spans of C, where x is a positive real number,
we finally obtain the real L(j, k) edge spans and L(j, k)
edge spans of C,.

Proposition 1 3 ,(C,) =x +1.

Proof Let f be any real L(x, 1)-labeling of C,. With-
out loss of generality, suppose f(v,) =0. Then, due to the
distance conditions, it is clear that max{f(v,), f(v,) }=x+
1. Thus B,,(C,) =x+1.

Proposition 2 For even number n, 8, ,(C,) =x +1.

Proof If x=1/2, it is straightforward to check that the
labeling f defined below is a real L(x, 1)-labeling of C,
with edge span x +1.

(i-1)x i=1,2,...,%
Slv) = " "
(n—-i+1)x+1 i=7+1,?+2,...,n
1 .
If x<—, define
2
(i-Dx i=1,2
. n
i-2 i=3,4,. '
f)y=q¢(.,_n\ n_ . n_ . n
(l 2)x+2 1 z_2+1,2+2
x+n+1-1i i:%+3,%+4, ,n

We can verify that f* is a real L(j, k) -labeling of C, with
edge span x +1. Thus B3,_,(C,) <x +1.

By proposition 1, ﬁ’x,l (C,) =x+1 for the even number
n.

Note that 8, , (C,) =2x for any positive real number x.
We next consider the edge spans of odd cycles C,,,, for
t=2.

1+1

Proposition 3 If x>1 and 1= x| or if 0 <x<1 and 1=
3, then B ,(C,.,) =x+1.

Proof By proposition 1, we only need to give the real
L(x, 1)-labelings of cycles with edge span x + 1.

Casel x>1 and t?(ﬂ.
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1) x>2. If r=|x]+1, define

(i-1x i=1,2,..,1+2
fi(v) =] Q43 -Dx+1+2-i i:t+3,...,t+LxJ+1
2t +2-i)x+1 i=t+|x]+2,..20+1

This labeling is a real L(x, 1)-labeling of C, and its

t+1°
edge span is max{x,x +1,2x - LxJ} =x+1.
Otherwise, t = M = (xw we may modify f, as follows:
(i-Dx
Qt+3-Dx+t+2 -1

i=1,2,..,t+2
i=t+3,t+4,...,2t +1

£l :{

It is a real L(x, 1)-labeling of C,,,, with edge span x + 1.
2) 1 <x<2. Define

(i-1)x
H(v) = {(i—Z)x+2
(2t+2-Dx+1

i=1,2,...,t
i=t+1,t+2
i=t+3,t+4,...,2t+1

This labeling is a real L(x, 1)-labeling of C,,,,, and its
edge span is max{x,x +1,2} =x+1.
Case2 0<x<1 and r=3.
1) 0 <x<1/2. Define
L+(=D, i=1,2,..,1-1
2
g (v) = %Hzr-l Cioi=ni4,.,20-2
2t-i)x i=2t-1,2¢t
x+1 i=2t+1
This labeling is a real L(x, 1)-labeling of C,,,,, and its
edge span is max{x +1,1 —x,x,1} =x+1.
2) 1/2 <x<1. Define
(i-1)x i=1,2,...,t
g,(v) ={(2t+1 -Dx+1 i=t+1,t+2,...,2t-1
(i-20)x+1 i=2t,2r+1

This labeling is a real L(x, 1)-labeling of C,,,,, and its
edge span is max{x,x +1,2x} =x+1.

Proposition 4 If 1<r<|x|, then B,,(C,,,,) =x+x/1.

Proof If r=1<|x] then B ,(C,,) =B, ,(C,) =2x=
X +x/t.

Now we prove that if 2<r< ij, then BXTI(CZM) =x+
x/t. Define

fivy =[G

+21_1+(_1)I]x i=1,2,...20+1
4t

It is a real L(x, 1)-labeling with edge span x + x/t. So
B..(C,.)) Sx+x/t.

On the other hand, we prove that ,BAL1 (Cyy)) =x+x/1.
Suppose that f'is a real L(x, 1)-labeling of C,,,, with edge
span BXYI(QM, ) <x + x/t. Without loss of generality,
suppose f(v,) =0. Since the edge span of fis less than x +
x/t, the labels of the two adjacent vertices of v,, f(v,) and
f(v,,,,), must belong to the set (x, x +x/¢). Let I, =f(v,,,)
-flv), i=1,2,...,2t, then we can obtain

X
xs\li\<x+7
and
2t X
x < Zfli =flv, +1) <x+7

Let m, be the number of /, which are positive, and let m,
=2t — m, be the number of [/, which are negative. If

2t
m, >m,, thenm =t+1,m,<t -1, andf(v,,,,) = ZI[ =
i=1

x x .
- - — = —. Th
Sol= Y || >mx mz(x+t) X+ is is a

;>0 1,<0
contradiction. If m, <m,, then m, <t -1, m,=t+1, and

2
f(v2r+l) = zlx = zli_z ‘li\<ml(x +i)—m2x<
i=1 1,50 1,<0 t

0, another contradiction. If m;, = m, =1, then f(v,,,) =

2t
Zli=Zl[—z\li\<m1(X+i)—mzx=(t+1)x—
i=1 1,50 1,<0 t

tx = x . We again obtain a contradiction. So B“( C,.)=x

+§. Thus £, ,(C,,.,) =x+%.

3 <L

2 )
Proposition 5 B3, ,(C,) ={x+1 %sxsZ

32l x=2

Proof From proposition 3 we know that, if 1 <x<?2,
then BL, (Cs) =x + 1. By proposition 4, if x =2, then
B.,(Cy) =3x/2. If x =1, then the L(x, 1)-labeling f of C,
defined as f(v,) =0, f(v,) =1, f(v,) =3, f(v,) =4, and
f(vs) =2 has an edge span x + 1. ThusBH(CS) =2=x+1.
So

x+1 Isx<<2
B..(Cy) ={32x =2

Note that C;, the complement of C;, is also a cycle. And
if the vertices u# and v are adjacent in Cy, then they are at
distance two in Cs; if the vertices u and v are at distance
two in Cy, then they are adjacent in C;. Hence

B.i(C) =B, (C) =xBr ((C9) =xB1 (Cy)

By the above conclusion, we obtain

L+1 %stl
Bri(C) =17 |
P si
2x )
So
1
x+1 7SXS1
BX.I(CS): i X<L
2 )

This completes the proof.
We summarize the above several propositions as the fol-
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lowing theorem which gives all the L(x, 1) edge spans of C,
(x>0).

Theorem 12 1) B, ,(C,) =x +1 if one of the following
cases holds: (D niseven; @ nisodd, 0 <x<1 and n=7;

® nisodd, x>1 and n=2]x|+1.

2) B.,(C) =x+x/tifnisodd, x>1 and3<n<2[x]+
1.
3

)

2
3) B, (Cy) ={x+1 %$x$2

3x
2
By theorems 7, 11 and 12, we can directly obtain the real
L(j, k) edge spans and L(j, k) edge spans of cycles. The
following corollary is about the L(j, k) edge spans of cy-
cles.
Corollary 2 Suppose that j and k are two positive inte-
gers, then
1) B;,(C,) =j+k if one of the following cases holds: @
niseven; @ nisodd, 0 <j<kandn=7; @ nisodd, j>

k and n?ﬂ%l +1.

x=2

2) B,.(C) :j+( 2]1W if nisodd, j>kand 3sn<

o~
2L%J +1.
k5] =5
3) Bu(C) ={j+k S <j<ak
j+(§—ﬂ j=2k

3 Complete ¢-Partite Graphs
Theorem 13 Let K=K

ny, f,

graph, where n, =n,=...=n,. Letj and k be two positive
real numbers with j = k. Then B, (K) = (r - 1)j +

((%Mgni_t)k.

Proof Letp = (t—1)j + ((%W+ in —t)k. Sup-
i=2

., be a complete z-partite

pose that V(K) =V, UV,U...UuV,UV,,,, where V,UV,,,,
n
V,s ..., V, are t partite sets of K, and \V,\ = (711

nl . .
\ V. \ = LTJ’ \V,. =n,, i=2,3,...,t Label the vertices

ineach V. (i=1,2, ...,t+1) with the real numbers which
are consecutive multiples of k such that the minimum label
in V,is 0, and the minimum label of V(i =2,3,...,¢+1) is
the maximum label of V, | plus the real number j. It is
straightforward to check that this labeling is a real L(Jj, k) -
labeling of K and its edge span is 3. Hence 8, ,(K) <f3.

On the other hand, suppose that f is a real L(}j, k) -labe-
ling with BM(K,]‘) :BM(K). We prove that ﬁAM(K,f) =p.
LetveV,ueV, and f(v) =0,f(u) =M = g&)éf(w). Note
that

Au(K) = (1t =1)j + 3 (n, =Dk
and
M=R,(K =(-Dj+Y (n-Dk=p

If r+#s, then BM(K,f) :MZE. So, we can assume that r
=s. In this case, M = XM(K) +j =4+ 2 (n, -1)k. Let
i=1

a and b be the maximum and minimum values of f on all
vertices not in V,. Then

a-b=Rk,(K —j—-(n -k =(t-1)j+Y (n, -k -
j-(n, —Dk=(t-2)j+ Z(n[ -1k
and

(a =0) +(M -b) =2(t - 1)j +2i(ni ~Dk +(n, - Dk

Thus, either a —0=8 or M — b=f3, which implies that ,éj‘ ‘
(K. /) BB' So, Bj.k(K3f) =:é'

By theorem 7, the L(j, k) edge spans of complete t-par-
tite graphs where j and k are two positive integers with j=k
are the same as theorem 13.

Suppose that one of two real numbers j and k is zero,
then it is very trivial that 8, (K, , ) =A, (K, , )=

(t - 1)j’ and AAO,k(Kn,,nz,...,n,) = (nl - 1)k’ BAO,/((KH,,I‘IE....,H,) =
MLk
( 2 ) ‘

For j <k, it seems not easy to determine the real L(j, k) -
labeling numbers and the real L(j, k) edge spans of the com-
plete t-partite graphs.
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AR AR
(R RFHRFZ, &7 211189)

WE: B GwL(j,k) A5 2B EER IR FRE Y — A v, ATARRTREI 3T ey EHARE E VA ],
BEEA2 TS R ERMEEZ S Ak T TFTEHGH—ANL(j,k) 45 f, X EL(j,k) BHEEH
Bii(G.f) =max| |f(x) =f(y) [: x,yl eE(G)|. B G#yL(j,k) r#5 FEALAB;(G),E~ G A L(j,k)
AT L k) R E TR B G FALL(j,k) AT ERLG, ) ATk, R RABRIER —F
HAa e B A AT SRR FREG— A kst B G W5 L(j,k) T e it kB, (G). AATHEH
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KB : L(j,k)#r5 5 AL L(j,k) 4755 L(j,k) 285 5 AL L(j,k) A% 5 d it
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