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Abstract: In order to exploit the capability of the peak-to-
average power ratio ( PAPR) reduction afforded by the partial
transmit sequences ( PTS) approach in orthogonal frequency
division multiplexing ( OFDM ) systems, subblock partition
schemes for the PTS approach are studied. The motivation is to
establish the relationship between the subblock partition and the
capability of PAPR reduction through the periodic autocorrelation
functions ( ACFs) of partial transmit sequences and the periodic
cross-correlation functions ( CCFs) of signal candidates. Let Q
represent the variation of the square magnitudes of ACFs. It is
found that the lower the Q-value is, the better PAPR performance
can be achieved, which is introduced as a design criterion for
subblock partition. Based on this criterion, four common partition
methods are compared and an efficient partition strategy is
proposed. It is shown that structured partition schemes with low
computational complexity have a large Q-value, leading to a poor
PAPR performance. The new strategy can be regarded as a trade-
off between PAPR performance and computational complexity.
The simulation results show that the strategy can achieve an
optimal performance with a relatively low complexity and,
moreover, does not increase the amount of side information.
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rthogonal frequency division multiplexing ( OFDM)
has found its way to high-data-rate wireless transmis-
sion over fading channels'"'. One of the primary drawbacks
of OFDM is the high peak-to-average power ratio( PAPR) of
the transmit signal. The OFDM signal with a high PAPR re-
quires a large linear range of system components, which is
impractical for most applications. As a result, PAPR reduc-
tion of OFDM signals has been an active field of research
since Jones et al. "' first described a block coding scheme.
Among existing schemes, the partial transmit sequences
(PTS) approach is a competitive one'”'. The performance
and complexity of the PTS approach mostly rely on a rota-
tion factor selection and a subblock partition scheme' ™.
Many subblock partition methods such as the adjacent
partition ( AP), the interleaved partition (IP), the pseudo-
random partition ( PP), the concatenated pseudo-random
partition ( CPP) and the enhanced interleaved partition
(EIP) "™ have been developed to exploit the capability of
PAPR reduction. These methods are based on intuitive ob-
servations. However, they cannot be precisely evaluated,
since no criterion is provided. For example, the PP in Ref.
[7] is intuitively expected to have the lowest autocorrelation
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of each partial transmit sequence, while the EIP in Ref. [9]
is enhanced to generate more effective candidates than
the IP.

In this paper, we introduce a correlation-based criterion
for subblock partition design. Based on the criterion, four
common partition methods (IP, AP, PP, EIP)are compared
and an efficient partition strategy is presented. It is proved
that the criterion is well fit for the evaluation and design of
subblock partition.

1 PTS Approach and Subblock Partition
The complex OFDM signal with N subcarriers is given by

z LY 0<

Nk()

x(t) = t<T (D)

where %, is the complex data; T is the symbol period and Af
=1/T. The PAPR of the OFDM signal is defined as

max | x(#) |
0<t<T

Posr =01 2
E[ |x(1) "] )

More practically, the PAPR can be approximately compu-
ted by using 4N samples of the OFDM signal'”'. Here, we
use Nyquist sampling (N samples). Let £ be the data vector
and x be the signal vector. Denote F'as an N x N inverse
fast Fourier transform ( IFFT) matrix with entries[ F '], =

Ru(r-1(c-1)
exp( N
c is the column index. The sampled OFDM signal becomes
£=F 'x. Then, we have the detailed PTS approach as fol-
lows.

Step 1

)/ /N , where r is the row index and

X is partitioned into V subblocks, represented by

£Y,v=1,2,...,V. Note that £ = 2 £ . Each subblock

is composed of N/V data elements and N - N/V zero ele-
ments.
Step 2 All the IFFT-ed subblocks are phase-rotated and

added to construct new signal vectors, represented by
\4

z bV F'#Y | where b is the rotation factor. All the ro-

v=I
tation factors are always selected from a finite set @ =
(™" w=0,1, ..., W-1} in practice.
Step 3 The optimum rotation factor is found according
to the following optimization:
{bf,;,Z} =arg mm max ‘ z b F 2] ‘) (3)

nel0,N)
The PAPR of the signal with the optimum rotation factors is
minimized. The optimization result is transmitted to the re-

ceiver through side information. Note that the average pow-
er is unchanged.
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As mentioned above, a fundamental issue in the PTS ap-
proach is the subblock partition design in step 1. According
to the process, we define matrices P with £” =P % (v
=1,2,...,N) as subblock partition matrices. These matri-
ces should have the following properties:

1) Each matrix is a diagonal matrix consisting of 1 s or 0
S;

2) All the matrices have the same number of 1 s;

\4
3) Y P =1.
v=1

The problem of the subblock partition is equivalent to op-
timizing the partition matrices.

2 Correlation-Based Subblock Partition Design

Now, we introduce a correlation-based criterion to opti-
mize the above-mentioned partition matrices. The motiva-
tion for the criterion is to establish the relationship between
the subblock partition and the capability of PAPR reduction.
It is pointed out in Ref. [ 7] that subbclock partition plays an
important role in periodic autocorrelation functions( ACFs)
of partial transmit sequences. Moreover, it is found in Ref.
[9] that the performance of PAPR reduction is affected by
the number of effective candidates. As a result, the objec-
tive is to associate ACFs with effective candidates.

In fact, non-effective candidates can be described by the
periodic cross-correlation functions ( CCFs) of signal candi-
dates. The CCF is defined as

. 1 ,
7% [p,] :(TZE{(xk)HR"’x'} p,=0,1,...,N-1
(4)
Ipr . s . k
where R” = I 0 "]1s a shifting matrix and x" denotes
Po

the k-th signal candidate. Then, non-effective candidates
are included in {x" [max [ n"“"[p,] | =1, ¥ I#n}.
In order to simplify the expression of the CCF, we substi-

| v

tute x = Y b” F'P”#andx' = Y b” F"'P" £ into the
v=l v=1

definition, and then we have

\4
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It can be calculated that D™ = diag ( "Ny n=0,1, ..,
N -1 and (P"")"P" =0, Vv, #v,. Therefore, the defini-
tion of the CCF is simplified to

1 ! , ,

n"lpod = SELY (0) b8 PUD R} (5)
x v=1

The ACF can also be simplified to

1

o

/\(v) [po] — {xAHP(v)Dp”xA} (6)

=

It is, therefore, easily found that

14
1 lpd = X (B 5" A p,]
v=1

From the description of non-effective candidates, low-
amplitude CCFs are preferred, so that more effective candi-
dates will be available. Low-amplitude ACFs are also nee-
ded to prevent interlock in pursuing peak cancellation'”. As
a matter of fact, the amplitude of the CCF can be approxi-
mated as

0l [= max{ 3 (21 p,] Jeos(2mt +97) } (D)

where ¢ = arg((b,”) * b,” A" [p,]) is the mixed phase
and ¥={r. —-0.5<r=<0.5}. Low-amplitude ACFs are suf-
ficient for low-amplitude CCFs. Consequently, the objec-
tive is transformed to minimize the amplitudes of all ACFs.

For simplicity, we first consider constant modulus con-
stellations. In this situation, the ACF can be rewritten as

AV 1p] = lﬁ{i”P(”) D”i}, where i represents the all-one

vector. It can be found that the average square amplitude of
ACEFs satisfies

1 N-1 \4 1
N*VZO Z A I = 3y (8)
po=0 v=

The average square amplitude of ACFs is a constant. As a
result, the minimization of the amplitudes of all ACFs is ap-
proximately equivalent to the minimization of the variation
of these square amplitudes. Here, we obtain a criterion as

follows:

118« Ly
argmin{ 7o 3 3 (A7 0pl F-y) } O

Next, we consider non-constant modulus constellations.
Take 16QAM for example. The non-constant modulus con-
stellation can be decomposed into two constant modulus
constellations(i. e. £ =¥ + £), as shown in Fig. 1. There-
fore, the minimization of peak amplitude max, |[x], ]| can

nel0,

be approximated by minimizing the sum of max |1, |
nel0,N)

and max |[x],|, each of which corresponds to a constant
nel0,N)

modulus situation. The above criterion can be utilized as
well. It is shown by simulations that the approximation is
accurate.

16QAM QPSK

Fig.1 Construction of square 16QAM constellation from
two different 7t/4-QPSK constellations

3 Comparison of Subblock Partition Methods

Based on the above criterion, common subblock partition
methods, including IP, AP, PP and EIP, are compared in
this section. For the purpose of comparison, we assume that
N =8 and V =2. Let
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The ACFs and the Q-value are calculated as follows:

1)IP-PTS Every second carrier is assigned to one sub-
block, whose partition matrix is diag([1, 0, 1, 0, 1, 0, 1,
0]), and

1 i i B
/\“)[p()] :?(1 +e o2 +¢ /1u+eJ3 p(/z)

Jmpy/4

€
/\<2)[p0] = 8

( 1+ ejﬂpﬂ + ej-np,, + ejsﬁp‘/z)

0=0.0117

2) AP-PTS The first half of the carriers is assigned to
one subblock, whose partition matrix is diag ([1, 1, 1, 1,
0, 0, 0, 0]), and

AV p,] = 1 (1 4™ 4™ 4 Pty
T8

@ _(=D” w4 | im/2 | PBes4
A7 pe] = 3 (1+e +e +e )

0=0.006 8

3) PP-PTS  Carriers are partitioned pseudo-randomly.
Here, one of the pseudo-random partition matrices is select-
ed as diag([1, 0, 0, 1, 0, 1, 0, 1]), and

)\(1) [po] — g( 1+ eJ3ﬂpz/4 + eJ5‘rrp</4 + eﬂ‘ﬂp«/“)

1 . .
/\(2)[[70] - 8 ( ]7\'/’/4 +e]‘rr/7x/2 +eJ‘ITPu +e]3‘rrpx/2)

0=0.005 4

4)EIP-PTS The method is enhanced from IP-PTS. The
partition matrix is diag([1, 0, 0, 1, 1, 0, 0, 1]), and

1 v . v
(1) [Po] — g( 1+ eﬂm/“ +e™ 4+ eﬂm/“)
(2)[ 0] _ 7( jm/4 ejﬂp(/z i ejsﬂp(/4 i ejznp,/z)
0=0.007 8

It is known that the PP has the best performance( most of
the time), and the AP has a better performance than the IP.
Moreover, the EIP has a similar performance as the AP.
These performance improvements can be easily evaluated by
the criterion(i. e. , the lower the Q-value, the better). It can
be found that the PP can also lead to structured partition ma-
trices as well, especially when N and V are small. Struc-
tured partition matrices lead to a large Q-value. In the above
example, there exist C;/2 =35 kinds of partition matrices,
24 of which have Q =0. 005 4. However, others have large
Q-values. Thus, we need a strategy to avoid the large Q-
values.

4 Efficient Subblock Partition Strategy

In this section, an efficient partition strategy is proposed
based on the criterion. First, it should be noted that the PP-
PTS always has the best performance when N is reasonably
large, since the probability of large Q-values is very low.
However, the PP-PTS has the highest computational com-
plexity. In order to reduce the complexity, the CPP pro-
posed in Ref. [8] is a concatenation of the PP and the IP.
The algorithm is summarized as follows.

Agorithm 1 Concatenated pseudo-random partition

The data vector is divided into N subblocks: £ = {%,, ...,
£y, ) =9 =(£,,0,...,0}", ...3Y ={0,...,0, %,}".

N subblocks are iteratively assembled into U subblocks:

N
M=log2U,U>V;
for m=1 to M do

j/'\(l) _5’«(1) +5,\(1 +N/27) : ,y«(N/Z ") y\(N/Q"’) +5}«(N/2”‘+N/2”’) :

end for

Do pseudo-random combination from these U subblocks
to V subblocks.

The closer U approaches V , the lower complexity the
CPP has. In the limit case, i.e., U=V, the CPP is equiva-
lent to the IP. The complexity of the CPP remains low,
since it can be regarded as a combination of the IP. The
computational complexity of the above-mentioned partition
methods is compared in Tab. 1.

Tab.1 Computational complexity to construct one subblock
Method Multiplication Add
N N N N
1P 2vlogz v +N Vlog2 %
N
AP/PP 710g2 N Nlog, N
N N 3N N
EIP 2Vlogz Wt log7 v +N
N N N U N N U
CPP 2Vlog2 U +N+ ) log, % V10g2 U + Nlog, v
2mpv/N
In the first step, the ACFs are A" [p,] = v V= 0,1,
., N —1. After the second step, the ACFs become A" [p,]
2mpov/N ) ) . ejZ‘n'p“V/N
— 14+ ejzﬂ,,w/(zzv) . 14+ eJZTT/q,N/(Z Ny
v ) )= S
Ceonsts V=0,1,...,U-1, in which
N KN
— po=—k=0,1,..,U-1
Ceonst =4 U U (10)
0 others

Then, only UV ACFs need to be considered in the last
step. We can find that it is a partition problem from U to V.
As mentioned above, the PP in step 3 may result in partition
matrices with large Q-values, since U >V and N>U. As a
result, it is preferable to choose a partition method based on
criterion (9) in the final step. For instance, when V =2
and U =4V, diag([1,0,0,1,0,1,0,1]) with Q0 =0.005 4
is a good choice. Now, we present an efficient partition
strategy as follows:
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Step1 Considering the partition from the N-dimensional
vector into U subblocks, do interleaved partition, whose
partition matrices are represented by P, u=1,2,...,U .

Step 2 Again considering the partition from the U-di-
mensional vector into V subblocks, find partition matrices
with low Q-values based on the criterion above. The resul-
ting matrices are denoted as PV v=1,2,... V.

Step 3  The final partition matrices are obtained by the

U

3 (PV], P, v =1,2,..,V, which

u=1
are from an N-dimensional data vector into V subblocks.

Note that off-line computation is needed for finding matri-
ces with low Q-values. However, it should be calculated
only once for each (U , V) pair.

combination P =

5 Simulation Results and Discussion

In simulation, 10’ random OFDM signals with 128 sub-
carriers are generated to obtain the complement cumulative
distribution functions( CCDFs) of PAPR. Note that we use
4-times oversampling for PAPR computation and assume @
={ =1, =+j} as a rotation factor set.

Fig. 2 compares the performance of PTS by using IP,
AP, PP and the proposed strategy. Simulation results are
consistent with the analysis in section 3, which show that
the criterion fits for both constant and non-constant modulus
constellations. The results also show that the proposed strat-
egy has a better performance in PAPR reduction than the IP
and the AP even when U =2V. This performance improve-
ment can be easily evaluated by the criterion in (9).

10° —— Unmod
—>— Interleaved
—<— Adjacent
L —v— Pseudo-random
10 —o— Proposed, U=2V
QPSK, V=2
4
8210721
S
1073
1074 ;

5 6 7 8 9 10 11 12

Fig. 2 Performance of PTS by using IP, AP, PP and the
proposed strategy with U =2V

In Fig. 3, the performance of PTS by using the proposed
strategy is shown as a function of U/V. It is observed that
our strategy approaches the PP as U/V increases. It can also
be found that there is little improvement in PAPR reduction
for further increasing U/V when U/V > 8. Moreover, the
performance of PTS by using the EIP and the CPP are com-
pared. It is shown that the EIP for V =2 and our strategy
with U/V =2 have similar performance, while the CPP with
C = N/8 and our strategy with U/V =4 have similar per-
formance as well. Note that C =N/U.

10°F —— Unmod
—o— EIP
—o— CPP,C= N/8
10-1F —v— Pseudo-random
—o— Proposed, U=2V
—o— Proposed, U=4V
= 10-2+ —a— Proposed, U =8V
E10
Q
&)
10—3 L
104 L L )
7 8 9 10 11 12

Fig.3 Performance of PTS by using the proposed strategy
with U =2V, U=4V, U=8V

6 Conclusion

In this paper, we introduce a criterion for subblock parti-
tion design and compare common subblock partition meth-
ods. The correlation-based subblock partition criterion is
reasonable and well fit for the performance evaluation. We
also give an efficient partition strategy based on this criteri-
on. The strategy can be regarded as an enhancement of the
CPP, where partition matrices with large Q-values are avoi-
ded. Compared with the PP, the strategy can achieve opti-
mal performance with lower complexity and, moreover,
does not need additional side information.

References

[1] Bingham J A C. Multicarrier modulation for data transmis-
sion: an idea whose time has come [J]. IEEE Commun
Mag, 1990, 28(5): 5 —14.

[2] Jones A E, Wilkinson T A, Barton S K. Block coding
scheme for reduction of peak to mean envelope power ratio
of multicarrier transmission schemes [ J]. Electron Lett,
1994, 30(25): 2098 —2099.

[3] Han S H, Lee J H. An overview of peak-to-average power
ratio reduction techniques for multicarrier transmission [J].
IEEE Wireless Commun, 2005, 12(2): 56 —65.

[4] Muller S H, Huber J B. OFDM with reduced peak-to-aver-
age power ratio by optimum combination of partial transmit
sequences [J]. Electron Lett, 1997, 33(5): 368 —369.

[5] Chen H, Pottie G J. An orthogonal projection-based ap-
proach for PAR reduction in OFDM [J]. IEEE Commun
Lert, 2002, 6(5): 169 —171.

[6] Alavi A, Tellambura C, Fair I. PAPR reduction of OFDM
signals using partial transmit sequence: an optimal approach
using sphere decoding [J]. IEEE Commun Lett, 2005, 9
(11): 982 —984.

[7] Muller S, Huber J B. A novel peak power reduction scheme
for OFDM [ C]//Proc IEEE PIMRC’97. Helsinki, Finland,
1997: 1090 — 1094.

[8] Kang S G, Kim J G, Joo E K. A novel subblock partition
scheme for partial transmit sequence OFDM [J]. [EEE Trans
Broadcast, 1999, 45(3): 333 —338.

[9] Lu G, Wu P, Carlemalm-Logothetis C. Enhanced inter-
leaved partitioning PTS for peak-to-average power ratio re-
duction in OFDM systems [J]. Electron Lett, 2006, 42
(17): 983 —984.



Correlation-based subblock partition design for PTS approach 5

[10] Tellambura C. Computation of the continuous-time PAR of Lert, 2001, 5(5): 185 —187.
an OFDM signal with BPSK subcarriers [J]. IEEE Commun

PTS 75 A & TH X R FRE &3 it

M on Uik
(Ao RFREHAFE TEER, d% 210096)

HE. A TRGIHEH 7] (PTS) 7k £ EX IS A F (OFDM) % % WP [ fkié34 3 & 1k (PAPR) 69 48 7, #F
KT PTS ik ¥ 49 F 3% & P AL, 83t PTS 89 § 48 5% & 3 (ACFs) o 41415 5 89 Z48 % & # (CCFs) , 4 F
%) 5-Fo A% PAPR 4948 A AR 486, X 2 )0 Q & = ACFs 4434 7 18 JE 04 75 £. AP K IL Q 1A PTS ik AT ek
3] 49 PAPR ALK, I AR A F 5k B R ARABE — R, 334 A L6 5 S sk T BT
sk — PP AT R T e 2 o, VLR 25 R AW LA R LA 60 T X A ok e SR RIE S AL 2 JE 9 F) B ACFs
W F R E S £ K, Hi PAPR MR #F R T LA AEA £ PAPR Wit feid 5 4 ) BT e — FF 37
V. by B4R RO IZ R T VAR ARG B A B e A TR B AL, BB AL R A3 e AT

KW : BRI RW; AR FI]; TRX S

&4 %S TN929. 5; TN919. 3



