Journal of Southeast University (English Edition)

Vol.26, No.1, pp. 21 -25

Mar. 2010 ISSN 1003—7985

Reconfigurable implementation of AES algorithm IP core
based on pipeline structure

Li Bing

Xia Kewei

Liang Wenli

(School of Integrated Circuits, Southeast University, Nanjing 210096, China)

Abstract: In order to improve the data throughput of the
advanced encryption standard (AES) IP core while reducing the
hardware resource consumption and finally achieving a tradeoff
between speed and area, a mixed pipeline architecture and
reconfigurable technology for the design and implementation of
the AES IP core is proposed. The encryption and decryption
processes of the AES algorithm are achieved in the same process
within the mixed pipeline structure. According to the finite field
characterizations, the Sbox in the AES algorithm is optimized.
ShiftRow and MixColumn, which are the main components in
AES round transformation, are optimized with the reconfigurable
technology. The design is implemented on the Xilinx Virtex2p
xc2vp20-7 field programmable gate array (FPGA) device. It can
achieve a data throughput above 2.58 Gbit/s, and it only
requires 3 233 slices. Compared with other related designs of
AES IP cores on the same device, the proposed design can
achieve a tradeoff between speed and area, and obtain
satisfactory results in both data throughput and hardware resource
consumption.

Key words: advanced encryption standard (AES) algorithm;
reconfigurable; pipeline; finite field; round transformation

he trend of modern signal processing systems develop-
ment is towards all-digital and intelligent direction.
Much higher demands are required on hardware systems. In
the 1980s, Xilinx Company introduced the first field pro-
grammable gate array(FPGA). Since then, the configurable
technology has gradually become the hot topic of academic
research and industry interest. As it provides both the hard-
ware efficiency and the software programmability, the
reconfigurable technology is rapidly developing.
Reconfigurable hardware can achieve the most optimized
design in both space and time!". The reconfigurable signal
processing system can reuse hardware resources according to
different application needs. The architecture is flexible
enough to meet different specific application needs. The
basic reconfigurable hardware is a reconfigurable large-scale
integrated circuit. The configuration of these circuits,
known as reconfigurable elements, can be designed in ad-
vance and stored in the memory of the system. Reconfigu-
rable elements can be configured into a reconfigurable sys-
tem for specific application needs.
The idea of the reconfigurable architecture to the AES en-
cryption algorithm is introduced. It uses the same module to
achieve the data encryption/decryption processing. The

Received 2009-07-22.

Biography: Li Bing(1968—), male, doctor, associate professor, bernie _
seu@ seu. edu. cn.

Citation: Li Bing, Xia Kewei, Liang Wenli. Reconfigurable implementa-
tion of AES algorithm IP core based on pipeline structure[J]. Journal of
Southeast University (English Edition), 2010, 26(1): 21 —25.

reconfigurable encryption circuit can well overcome the
weaknesses of the traditional encryption system(Independent
data encryption and decryption can cause recourse-consu-
ming problems). The reconfigurable circuit with a pipeline
structure is implemented, and the data throughput rate is
greatly improved.

1 Implement of AES with Pipeline Structure

In 1997, the National Institute of Standards and Technol-
ogy(NIST) announced the initiation of an effort to develop
the AES and made a formal call for algorithms on Septem-
ber 12, 1997". After reviewing the results of this prelimi-
nary research, the algorithms such as MARS, RC6TM,
Rijndael”, Serpent and Twofish were selected as the final-
ists''. And further reviewing public analysis of the final-
ists, the NIST decided to propose Rijndael as the most ad-
vanced encryption standard(AES). It is expected to replace
the DES and triple DES so as to fulfill the more strict data
security requirements due to its enhanced security levels"™'.

Besides, an ASIC solution of the AES is also required
since it can be more secure and consumes less power than
that implemented by software.

1.1 AES system

The input and output of the AES algorithm can be consid-
ered as an 8-bit one-dimensional byte-array. In encryption,
the inputs are a plain text and a key; the output is a cipher
text packet. In decryption, the inputs are a cipher text and a
key; the output is a plain text. Each round of transformation
in the AES is used in the middle results. These middle re-
sults are known as states. The texts and keys in this paper
are all 128-bit, so the state of data is a 4 x4 rectangular data
array.

The AES encryption algorithm has four main operations:
SubBytes, ShiftRows, MixColumns and AddRoundKey.
The number of the looping rounds is set to N, -1, in which
N, is specified according to the AES specification. The en-
cryption flow chart is shown in Fig. 1(a). 10 rounds of en-
cryption are required to achieve a 128-bit AES encryption.
First, the plain text and the original key are taken as an
XOR operation, and then 10-round transformations are
done. However, in the last round transformation, the Mix-
Column operation is not required. The sequence of opera-
tions in decryption is basically the inverse of the operation
sequence in encryption. The decryption flow chart is shown
in Fig. I1(b).

1.2 Implement of pipeline structure

As shown in Fig. 1, There are a large number of hardware
resources consumption in AES encryption and decryption,
so we need to optimize the algorithm and reconfigure the

22

Li Bing, Xia Kewei, and Liang Wenli

Initial k
Sy AddRoundKey <110
InvShiftRows
SubBytes InvSubBytes
Round =9 ShiftRows > ‘
MixColumns K AddRoundKey é
AddRoundKey <—L Round =9 InvMixColumns 1=9,8, 51
i =1,2,",9
% ' InvShiftRows
SubBytes InvSubBytes
ShiftRows -
Kio Tnitial key
AddRoundKey AddRoundKey

(b)

(a)

Fig.1 AES encryption/decryption flow chart. (a) Encryp-
tion; (b)Decryption

circuit structure to reduce the hardware resources consump-
tion. Two methods are used to optimize the algorithm:

1) ShiftRow does not change the value of byte, and it on-
ly shifts its position. InvShiftRow only replaces each byte in
every state without changing its location. Therefore,
ShiftRow and InvShiftRow can be exchanged.

2) Mathematically, the linear transformation A meets A(x
+k) =A(x) + A(k). InvMixColumn is also a linear transfor-
mation, so it meets InvMixColumn (state & roundkey) =
InvMixColumn (state) @ InvMixColumn (roundkey). Then
AddRoundKey (state, roundkey) and InvMixColumn (state)
can be exchanged to InvMixColumn(state) and AddRoundKey
(state, roundkey).

After using the two optimized methods mentioned above,
the decryption and encryption of the AES can approximately
achieve the same process. Some inverse modules are used in
decryption. The optimized AES encryption/decryption flow
chart is shown in Fig. 2.

nitial key K Initial key
AddRoundKey (*——— AddRoundKey | 10 AddRoundKey
- +— Ky
InvShiftRows
E ti
SubBytes InvSubBytes (Inv) ShiftRows nenphon
ShiftRows Round =9 (Inv)SubBytes
Round =9 . K; .
MixColumns X AddRoundKey e (Inv)MixColumn
AddRoundKey |e——i— InvMixColumns | =287 "1 AddRoundKey [« | Ki
i=1,2,,9 - (Inv) MixColumn
* InvShiftRows -
Round = 9 Encrvoti i=1,2,-+,9
SubBytes ound = InvSubBytes (Tnv) ShiftRows eryption
ShiftRows (Inv) SubBytes Ko
K 10 -——
AddRoundKey |<+—— AddRoundKey ‘
Initial key
scopen
(a) (b) (e)

Fig. 2 Optimized AES encryption/decryption flow chart. (a) Encryption; (b) Decryption; (c) Encryption/Decryption

In Fig. 2, a hybrid pipeline structure to implement the
AES algorithm circuit is proposed. A register is used in
each round operation. In this structure, each round of cal-
culations can be completed in one clock cycle. The output
of each round operation is the output of a register, and one
set of data processing can be done in less than 10 clock cy-
cles. Therefore, the hybrid pipeline structure can accelerate
the data computational speed and improve data throughput.

2 Reconfigurable Design of Round Transformation

The pipeline architecture can improve the clock frequen-
cy due to the fact that it can be copied into the process cir-
cuits as a module when required, and this is a method by
which we maybe cost more circuit-area in exchange for
higher circuit-speed. Therefore, reducing the module size
is a key problem. We find that the architecture can be
reconfigured in each round transformation and can obtain a
balance between size and speed of the circuit. Since our de-
sign allows sharing of resources by using the reconfigurable
structure, the following proposed modules of the AES algo-
rithm obtain a better balance in the result, including Sbox,
ShiftRow and MixColumn.

2.1 Sbox

Sbox is a reversible nonlinear transformation, and it is
also a key module in the AES. Sbox is used in subbytes
and expandkey operations. Since the optimization of Sbox
can significantly reduce the consumption of hardware, we
optimize the Sbox module based on the theory of the finite
field GF(2°*) and then carry out the reconfigurable design
of Sbox. The Sbox architecture can be reconfigured and re-
used as the core modules in Sbox. This architecture can be
implemented by combination logic. The area of the circuit
is optimized by these improvements.

2.1.1 Generation principles of Sbox

In the AES algorithm, the Sbox structure is generated on
the principle of affine theories. The operation of Sbox has
two steps: the multiplicative inverse function on the field
GF(2%) and the affine function. In order to reduce the
complexity of combinational logic, we make an isomorphic
map on the finite field GF(2°) to the domain GF(2"), and
reverse the multiplicative inverse function into a computing
operation on the finite field GF(2*). The Sbox structure is
shown in Fig. 3.

As shown in Fig.3, Sbox and InvSbox use the same in-

Reconfigurable implementation of AES algorithm IP core based on pipeline structure 23

Decryption Encryption

affine TR T T—" affine
= 3.. mee =20
n Out
En

Fig. 3 Sbox structure

verse circuit. When encrypting, the control signal En is set
to 1. We first do multiplicative inverse operation checks,
and then encrypt the affine transformation. The process of
decryption is contrary to the encryption process, and the
control signal En is reset to 0. The encryption affine trans-
formation is calculated by

Yolri o001 1 1 17%]| roq
Y 1 100 0 1 1 1% 1
Y, 1 110001 1[x 1
;| |1 11100 0 1[x 0
y4_11111000x4€90(1)
v, 01 1 1 110 0y 0

y 001 1 1 1 1 0f, 1
Lo oo 1 1 1 1 147 L1l
Ly, Lx,

And the decryption affine transformation is calculated by

Yl roo1 001 0 17%] ro7
Xl 1 001 0 0 1 OfY] |1
Ll lo1 001 00 1Yo
(|1 01 .00 1 0 0fy|n!
x4_01010010y4®0(2)
N 0010100 1f, 0
5 5
. 1 0010100 0
6 Ye
Lo 100 1 0 1 ol Lo
=X, - -y, -

2.1.2 Multiplicative inverse circuit

The multiplicative inverse module is a key component in
Sbox. The inverse multiplication circuit is designed as fol-
lows:

1) Make the isomorphic element map on the finite field
GF(2*) to the domain GF(2%);

2) Obtain the inverse elements on the finite field
GF(2*%), and then obtain the isomorphic inverse elements
on GF(2%).

We select reducible polynomial p(x) = x> +x +8 and
primitive polynomial ¢(x) =x" +x +1 to build a polynomi-
al bx +c on GF(2"). The isomorphic map between GF(2*)
and GF(2*) is implemented by

{b[3: 0], c[3: 0]} =Tx (3)
1 0 0 01 1 1 07
01 100O0O0O0
00 0 0 OO0 O0 1
T = 001 01O0O0O0
00 0O0T1T1T1PO
01 001 0 11
001101 01
L0 O 0O OO 1 0 1

The inverse formula of bx + ¢ is

(bx+c) ' =b(8D* B bcDc’) 'x + (cDb) (8’ DBbcDHc’)
(4)

So we can obtain the elements p and ¢ which are the in-
verses of b and ¢ from Eq. (4),

p=b(80®bc®c) ™!
qg=(c®b) (80’ Dbcd) ™

Then we can make isomorphic maps p and g to the ele-
ments on GF(2%) by

Y=T""{p[3: 0], ¢[3: 0]} (5)
r-- o o 0 1 0 0 07
00 0 0 1 1 01
01 0 0 1 1 01
72|01 000 1 10
101 01 1 1 0 1
0O 01 01 1 0O
01 1 1 1 0 0 1
LO O 1 0 1 1 0 14

2.2 ShiftRow

ShiftRow is a shifting operation and it just rotates the
bytes in the state matrix. The shift law of ShiftRow and
InvShiftRow is shown in Fig.4. From Fig. 4, it can be
seen that after the ShiftRow and InvShiftRow operations are
done, and row O and row 2 are the same, and row 1 and
row 3 are different. Therefore, row 0 and row 2 in
ShiftRow and InvShiftRow can be reconfigured. Fig.5
shows the realization of the process.

Soo|So1 | So2 | Sos Soo|Sot | Soz | Sos row 0
SIO Sll 512 Sl3
Sx0|S21|S2|S2x S0 (82| S20|Sx
S30(Sa1 | Sa | S5 83318301 531153 8311831 513/ S30| row 3
Original state ShiftRow InvShiftRow

Fig. 4 Row exchange in ShiftRow and InvShiftRow

row 1

Sm 521 I‘OW2

[Shift _'row 1] [Shift _'row 1]
[Shift_ row 3 | [Shift_row 3 |
'MUX Encryption
State_ out |

Fig. 5 ShiftRow and InvShiftRow structure
2.3 MixColumn

The role of MixColumn is to replace each column in
states. It uses the value of the status byte to a mathematical
domain plus and the domain multiply, and then each byte is
replaced by the operation results. The realization of the
process is shown in Fig. 6.

MixColumn can be transformed by

b, 2 3 1 1 a, 2(a, +a,) +a, +a, +a,
b, _ 1 2 3 1 ® a, _ 2(a, +a,) +a, +a, +a,
b, 11 2 3 a, 2(a, +a,) +a, +a, +a,
b, 311 2 a, 2(a, +a,) +a, +a, +a,

(6)

InvMixColumn can be realized by

24

Li Bing, Xia Kewei, and Liang Wenli

d, e b d 9 a, 8(a, +a, +a, +a;) +4(a, +a,) +2(a, +a,) +a, +a, +a,
d, _ 9 ¢ b d ® a | _ 8(a, +a, +a, +a;) +4(a, +a,) +2(a, +a,) +a, +a, +a, _
d, d 9 e b a, 8(a, +a, +a, +a,) +4(a, +a,) +2(a, +a,) +a, +a, +a,
d, b d 9 e a 8(a, +a, +a, +a,;) +4(a, +a,) +2(a, +a,) +a,+a, +a,

r8(a, +a, +a, +a3j +4(a, +a,) +b,
8(a, +a, +a, +a,) +4(a, +a,;) +b,
8(a, +a, +a, +a;) +4(a, +a,) +b,
L8(a, +a, +a, +a,) +4(a, +a;) +b,

where b,, b,, b, and b, are as the same as those in Eq.
(6). It can be compacted as the structure of MixColumn.
InvMixColumn is shown in Fig. 7. From the circuit view
(see Fig. 8), some parts of the logic circuit are reconfigured,
which can save a few gates so that the circuit area is reduced.
In Fig. 8, Xtime block can achieve an AND operation between
input data and the immediate hex number 0x02.

MixColumns
2 3 1 1
/ 123 1|g \\
ag | ao1 (Ao (a3 11 2 3 boo| boi | bez | bes
ajp|an|a@n|a3 L3 1 1 2 bio| b11| b12| b1
ay|ay|an|axn bao| ba1| by | by
a30| d31|a3 (A33 Fre b d 9 b3g| b31 | by | bz
N9 e b d]g ‘/
d 9 e b
L d 9 e

InvMixColumns
Fig. 6 Realization of MixColumn and InvMixColumn

State _ in ¢

‘ MixColumns ‘

\—*

‘ Process of InvMixColumns

MUX 4 Encryption

State _ out *

Fig.7 Optimized MixColumn and InvMixColumn structure

(7
In0O InvMixColumn out
=D Xtimef— D= {Xtime]{Xtime} =D —>
Inl Pan A
Y i MixColumn out
In3 /L NKeimel
U mAtme

Fig. 8 MixColumn and InvMixColumn circuit realization

3 Synthesis Results

In the AES algorithm, the data throughput and the circuit
area are two important parameters used to evaluate the hard-
ware implementation:

1) Data throughput can be expressed as throughput =
128 / (average clock cycles in processing a data block x
clock cycle value);

2) Circuit area for FPGA refers to the basic logic unit
consumed or the number of configurable logic blocks.

The proposed design is implemented in Verilog HDL lan-
guage and correctly simulated through the Modelsim tool.
We realize the AES algorithm by the integrated RTL-level
code on the Xilinx Virtex2p xc2vp20-7 FPGA device. The
clock frequency is 164 MHz; the slack is 6. 23 ns in the
worst situation; the data throughput is 2. 58 Gbit/s, and
the logical gates consumed are 3 233 slices.

Tab. 1 lists some models of the AES algorithm based on
the same Xilinx Virtex2p xc2vp20-7 device, and shows dif-
ferent designs with the synthesized results.

Ref. [4] does not use the pipeline structure to implement
the AES algorithm and its operation frequency is too low;
Ref. [5] improves the data throughput, but the realization

Tab.1 Different synthesize results of AES

Design Architecture Areas CLB slices Clock frequency/MHz Throughput/(Mbit-s ~!) Mode support
Ref. [4] Sequential 4 189 65 1190 Encryption/decryption
Ref. [5] Sequential 7 301 148 1722 Decrypt'ion
6 766 194 2 257 Encryption
Ref. [6] Pipeline 9 446 168 21 640 Encryption
Ref. [7] Sequential 928 + SBRAM 122 1392 Encryption/decryption
Ref. [8] Sequential 3 168 + SBRAM 156 1995 Encryption/decryption
This paper Pipeline 3233 164 2 580 Encryption/decryption

of Sbox still uses the look-up table form, and the structure
occupies a large number of hardware resources; Ref. [6]
uses the pipeline structure and has the data throughput im-
proved, but it is only implemented in the encryption
process; Ref. [7] uses fewer hardware resources, but its cal-
culation speed is too low; Ref. [8] can support three length
keys, but there is no optimization in the encryption or de-
cryption process, and it also occupies a large number of
hardware resources. Compared with all the designs men-
tioned above, the proposed design can obtain more satisfac-

tory results in terms of both data throughput and circuit
area.

4 Conclusion

In this paper, we use the reconfigurable structure to opti-
mize the AES encryption algorithm. Compared with other
related designs, the proposed design optimizes the circuit
area well and the data throughput is significantly improved.
However, the inadequacy of this design does not support
different lengths of keys, and in future we will make fur-

Reconfigurable implementation of AES algorithm IP core based on pipeline structure 25

ther studies on it and improve the circuit design of the AES romicro Symposium on Digital System Design, Architec-
algorithm. tures, Methods and Tools. Rennes, France, 2004: 358 —
362.

[5] Sivakumar C, Velmurugan A. high speed VLSI design CC-
MP AES cipher for WLAN(IEEE 802. 11i) [C]//Interna-
tional Conference on Signal Processing, Communications
and Networking. Chennai, India, 2007: 398 —403.

[6] Hodjat A, Verbauwhede I. A 21. 54 Gbits/s fully pipelined
AES processor on FPGA [C]// Proceedings of the 12th An-
nual IEEE Symp on Field-Programmable Custom Computing
Machines. Napa, CA, USA, 2004: 308 —309.

[7] CAST Inc. AESI28-P Programmable advanced encryption
standard core [EB/OL]. (2005-01-10) [2009-07-10]. http:
//www. cast-inc. com/ cores/aes-p/index. shtml.

[8] Helion Technology Limited Company. High performance
AES (Rijndael) cores for Xilinx FPGA[EB/OL]. (2005-
02-23) [2009-07-10]. http: //www. heliontech. com/aes.
htm.

References

[1] Fischer V, Drutarovsky M. Two methods of Rijndael im-
plementation in reconfigurable hardware [C]//The Third
International Workshop on Cryptographic Hardware and
Embedded Systems. Paris, France, 2001, 2162: 77 —92.

[2] National Institute of Standards and Technology(NIST). Ad-
vanced encryption standard (AES) (FIPS PUB 197) [S].
Gaithersburg, MD, USA: National Institute of Standards
and Technology, 2001.

[3] Daemen J, Rijmen V. The design of Rijndael AES: the ad-
vanced encryption standard [M]. Berlin, Germany:
Springer-Verlag, 2002.

[4] Sever R, Ismailglu A N, Tekmen Y C, et al. A high speed
FPGA implementation of the Rijndael algorithm [C]//Eu-

ETRKEEHRATEN AES Hik 1P B4 L2

F sk EAY% RIm
(ABHRFERLBFR, d% 210096)

WE: A T35 AES Fik ¥ IP B35 69 vk 2 51 B BF s D AR TR 69 & R, VLK B ik JF fe & AR 6 37 P L,
R RS ARAREEMFTERMRRZRT IP & %t QAR —MNRSARKEZ LMY AT ZAT
AES ik 0 n 25 Fo ff 55 18 A2 5 ARIEA TRIRGG ST, *F AES Fik 49 Sbox &3t 47 T Hh4L; &5 TEMHAK, =
T *F AES # % $: ¢4 £ 2444 ShiftRow #= MixColumn #54£4%. A%+t & Xilinx Virtex2p xc2vp20-7 FPGA %44
LR, AR AE TR E] 258 Gbit/s, FTEAAEHIUA 3233 S, it FIA G B 4 kg Jhuik ot A xh
o, FIT R FEABRAGIF, ok Tlom MR LA TR G LR,

KHEW: AES Fik; TEM; AKK; AR BT #H

fhESES . TNO11. 21

