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Abstract: In order to solve the no-wait flowshop scheduling
problem to minimize the maximum lateness, three job-block-
based neighborhoods are proposed, among which the block
exchange neighborhood have a size of O(n') while the block
swap and the simplified block exchange neighborhoods have a
size of O(n'). With larger sizes than the existing neighborhoods,
the proposed neighborhoods can enhance the solution quality of
local search algorithms. Speedup properties for the neighborhoods
are developed, which can evaluate a neighbor in constant time and
explore the neighborhoods in time proportional to their proposed
sizes. Unlike the dominance-rule-based speedup method, the
proposed speedups are applicable to any machine number. Three
neighborhoods and the union of block swap and the simplified
block exchange neighborhoods are compared in the tabu search.
Computational results on benchmark instances show that three
tabu search algorithms with O(n’) neighborhoods outperform the
existing algorithms and the tabu search algorithm with the union
has the best performance among all the tested algorithms.
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he no-wait flowshop has many industrial applica-
T tions'"!. Either the type of process or the lack of stor-
age between intermediate machines leads to the no-wait con-
straint'? . This paper considers the no-wait flowshop schedu-
ling problem with the maximum lateness criterion, i.e., the
Fm|nwt|L__ problem"', which is NP-hard when m=2".
Dileepan'” presented a dominance rule for the 2-machine
case. Wang and Cheng'” proposed some heuristics for the
same problem. For the general m-machine case with se-
quence independent setup times, Ruiz and Allahverdi'”
presented several heuristics. Allahverdi et al. ' considered
the Fm | nwt |aC, + (1 —a)L,, problem, developed domi-
nance rules for the 2- and 3-machine cases and proposed
several metaheuristics. Obviously, Fm|nwt|L_ is a spe-
cial case of Fm|nwt|aC,, + (1 —a)L,, with a=0.

Due to the NP-hardness of the Fm |nwt |L__problem, lo-
cal search is a practical choice. The efficiency of local search
is mainly determined by the evaluation time of neighbors.
Dileepan et al. "' developed dominance rules for m =2 and
m =3 to avoid computing objective values for some neigh-
bors. However, dominance rules are not generally
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applicable.

This paper develops speedup properties for three new
neighborhoods with large sizes. Large size neighborhoods
increase the possibility of local search algorithms in finding
high quality solutions, while speedup properties reduce the
evaluation time of neighbors. The proposed speedup proper-
ties have an advantage over the dominance rule method;
i.e., they are applicable to any m value. The tabu search
(TS)"™ is chosen to employ the neighborhoods and their
speedups, since the TS tries to find the best neighbor in
each iteration and can greatly benefit from speedup
properties.

1 Problem Formulation

In the m-machine no-wait flowshop scheduling problem,
n jobs need to be processed in the same order on machines
1,2, ..., m, such that the operation of each job has to be
processed without interruptions from the first to the last ma-
chines. To meet the no-wait constraint, the completion of a
job on a given machine must coincide with the initiation of
the operation on the succeeding machine. All jobs are re-
leased for processing at time zero. At any given time, a ma-
chine can process at most one job and a job can be pro-
cessed on at most one machine. Each feasible schedule is a
permutation of jobs 1, 2, ..., n. The goal is to find a
schedule minimizing the maximum lateness.

Let ¢, , be the processing time of job i (1 <i<n) on ma-
chine k (1 <k<m) and d, be its due date. To facilitate the
computation, a dummy job 0 is used with zero processing
time and a due date of positive infinity: 7, , =0 for 1 k<
m and d, = + . A schedule is expressed as a solution 77 =
e T a1 )» Where g, is the job at po-
sition i,  =m,,,, =0 and (m,, ..., 7, )is a permuta-
tion of jobs 1, 2, ..., n. Let C,; be the completion time
and d,, the due date of job 7, and then the maximum
lateness of 77 can be computed as

{70 7y

Lmax(ﬂ) = :?‘;ax ”{C[,‘] _dm} (1)
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where € = ZDU—LJ] with D, ; = max { ;(tm, n T
j= B =

fion )+« } being the difference in the completion time

. 12
between 77, and 77 ,_,, or the distance from 7,_,, to 7 ;"""

Eq. (1) takes O(nm) time to evaluate a solution. Due to
the no-wait constraint, D, ; is fixed only if 7, is pro-
cessed immediately after 77 ;_,,. The distance D, ; from job i
to job j can be pre-computed and stored in a matrix D =

(D, ;), 0<i, j<n, by the following expression''':
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k:]rr%ax m{;(tj, h _t[.h) +t[,k}
by = 0<sisml<jsni#j (2)
0 0<si<sn j=0

Since the lateness of the dummy job O is always negative
infinity,

Lmax ( 77) =

i=

Ilnzafn{cm —dpy } =, _max {Cm —d,}

(3)

Eq. (3) can evaluate a solution in O(n), but it is still
time consuming for local search. The next section presents
speedup properties for three new neighborhoods.

2 Speedup Properties for New Neighborhoods

The neighborhood is critical to the performance of local
search algorithms. Three job-block-based neighborhoods are
introduced and their speedup properties are developed. A
job block is a subsequence in the current solution and the
neighbor 77" of the current solution 7r is generated by the
moves of the neighborhoods as follows.

Definition 1( block exchange, BE) By exchanging the
nonadjacent job blocks [ 7, ..., @] and [7, ...,
7], move BE(am, h, i, j, k)(1shsn-2, h<isn-
2, i+2<j<n and j<k<n) generates a neighbor 77/ =
(s ooes Ty Tijps -
oo Ts Tikatys oo Tiaey) -

The BE neighborhood has a size of O(n*). It can be sim-
plified as follows.

Definition 2 ( simplified block exchange, SBE) Move
SBE (@, i, j, k) generates a neighbor 7' = (g, ...,
Ti-ns Tijis oo T Trivays - T T Tieeays oo
Ten) Whenl<isn -2 and jsk<n; @' =(my, ...

o Tigs Miisnys o Tons Tiws

Tij-1> Tis Tikenys oo Ticnys Ty oo Mg Tiggys oo
m,.) When 1<j<sn -3, j+1<k<sn-2and k+2<i<
n.

The SBE neighborhood has a size of O( n’). Block swap
moves exchange two adjacent job blocks as follows.

Definition 3 (block swap, BS) By swapping the adja-
cent blocks [ 7, ..., m;] and [7;,,;, ..., 7], move
BS(m, i, j, (1<isn-1, isjsn-1andj+1<k<n)
generates a neighbor 7' = (74, ... 7T;_y)» LTI
s oo Tjs Wiaarys oo Miaany)

The BS neighborhood also has a size of O( n'). For a job
block B, ;, = [, 7.y» --» ] in a7, its maximum
lateness L = k{rilaxj{ Cy —dyy}. Obviously L (7)) =

oo T

L. 1
L, ,fori=0, 1 and k=n, n+1. The maximum lateness
for each job block in 47 is pre-computed and stored in an up-
per triangular matrix L=(L, ), O0<isn+1, isjsn+
1, where

L C, —d, O<isn+1;i=j
ti. Jl _{max{L[, s Ly b 0<i<jsn+l
Let C = (C,;) be the completion time vector of 77, then

J
the distance sum in B,; ; can be computed as Z D, 4 =

k=i+l
C;, —C,, . Based on C and L, the speedup properties for
the moves are obtained.

Property 1 Forl<sh<n-4, h+1<i<sn-3, i+2<j
<n-1, j+1<k<n, the objective value of BE (a7, h, i,
J, k) can be computed as

L. (BE(a, h, i, j, k)) =max{L, ,_ 1;L, « +Dp,_ LT
(Cy - [h—lJ) Ly ;D + Dy +(Clk -Cy) -
(Crivn =Cho) 5Ly i+ Dy + Dy iy + Dy
(Coy =Cy) +(Cy =Ciii) =Dy s Ly +
Dy, i 5 +Dyy iy +D[,>1, i D ey =Dy
D[i~ i+l1] +D[.f—1~.f] +D[k-k+ll)} (4)

Proof When a job block is shifted in 77, its maximum
lateness and the completion time in all jobs in the job block
are changed by the same increment, which equals the
change of the first job’s completion time in the job block.
BE(ar, h, i, j, k) splits 77 into five job blocks, B, ,_,,
B, 4» Bl o> By and B, ., . Then it exchanges
By, ; and B, ,,, resulting in four arcs (h -1, h), (i, i+
1), (-1, j) and (k, k+1) which are replaced by (h -1,
Js (k,i+1), (j-1, h) and (i, k+1). When B,, , and
B, , are exchanged, B, ,_, is untouched. When B, , is
shifted backward, L , is decreased by D, , ; - (C; -
Ci,_,,)» due to the fact that the completion time in the jobs

in B, , is reduced. Similarly, the changes of L, ,,
L., ;oyandL,,, ., can be analyzed and Eq. (4)can be
obtained.

Similarly, the objective value of SBE (47,
BS(ar, i, j, k) can be computed as follows.

i, j, k)and

Property 2 The objective value of SBE (a7, i, j, k)
can be computed as

L,.(SBE(w, i, j, k)) =max{L, , ;L, ,+D,_,

(Cpy =Ciiyy) 7L:+1./—1 +D iy + Dy iy +(C[k1 -

Ciy) = (Cuvyy = Cyy) 5Ly + Dy + Dy gy +

Dlj—L il +(Cl/<J UJ) +(Cu 1] _Clt+lJ) _Dli-l‘ i

Lk+l. n+l +D[i—l,j] +D[k,j+l] +D[/ 1, D[i, k+1] -

(C[i+l] _C[ifll +D[j71.j] +D[k. k+1] )} (5)
Isisn-3;i+2<sjsn-1; j+1<ks<n
L,.(SBE( @, i, j, k)) =max{L, ‘H;LL ; +DU?17 i —(Cm -

[j—ll)’LkHJ  +D -1 14 +D'.k+11 _(C[k+lJ _C[j—lJ);
Lj.k +D[j—l‘ i] +D L k+1] + D! 1, jl + (C[i—lJ - C[k+]]) -
D[j—].j];L[+l,n+l +D[j—]. il +D[.l<+]] +D[[7],j] +D[k,i+1] -
(D[jfl,j] +D[k.k+]] +C[;+1] _C[i—]])} (6)

I1sjsn-3; j+1<ksn-2; k+2<i<n

Property 3 Forl<isn-2, i+l<sjsn-1, j+1<k
<n, the objective value for BS(7, i, j, k)can be compu-
ted as

‘max

L_ (BS(m, i, j, k) :max{Lu, i—];Lj+l.k +D

[i-1,j+11 —

(C[j+lJ - li—lJ);Li,j +D li-1,j+1 +D[k, il +(Cm _Clj+lJ) -
D[; 1, i]° Lk+1 n+l +D[i71,j+l] +D[k, i] +D[j,k+l] _(D[i—], i] +
D[j,j+l] +D[k,k+l])} (7)

Due to the matrix L, a neighbor can be evaluated in con-
stant time and each neighborhood can be searched in time
proportional to its size. The large size of the neighborhoods
can make full use of L and extend the regions that local
search can explore.
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3 Tabu Search

The TS is one of the most successful metaheuristics for
NP-hard combinatorial optimization problems'''. It starts
from an initial current solution and looks through its neigh-
borhood for a neighbor with the best objective value, then
continues from the best neighbor as a new current solution.
One of the main ideas of the TS is to use a tabu list as a
short-term memory to avoid cycling, to overcome local op-
tima or to guide the search process to the unexplored regions
of the solution space.

Trying to find the best neighbor in each iteration, the TS
can greatly benefit from the speedup properties and it is
therefore chosen for the considered problem. The TS in this
paper is adapted from the robust TS'*' and works as fol-
lows.

Algorithm 1 Tabu search

Compute the distance matrix D;

Generate an initial solution 7z by the NEH heuristic;

Initialize the tabu list, 77" <7, count«0;

While (the termination condition is not met) do

Compute the completion time vector C and the ma-
trix L for 77;
Select the best among moves that are not tabu or as-

pired;
Update the tabu list according to the selected move;
Transform 77 according to the selected move;
If (L, (@) <L, (7)) 7" «m
count«—count + 1;
Endwhile
Return 77" .

The initial solution is generated by the NEH heuristic'""

adapted for the considered problem'”®'. Here a fast imple-
mentation of the NEH is provided.
Algorithm 2 Fast NEH
Sort n jobs by their due dates in a non-decreasing order
and let 7' be the resultant permutation;
(0, @', 0);
For k=2, ..., n do
Compute the completion time vector C for 77;
Compute L, ,, and L, ,,,, for i=0,1, .., k+1;

Let p =arg min {L, ;5 C,, +D, ,-4d;
i=1,2,..., k ’ =112
Dml,”, ot Dk, T s T L[i. len(7) - 1] }
Insert 7{,, at position p in 77;
Endfor
Return 77.

The correctness of the implementation can be verified in a
way similar to the proof of property 1. The time complexity
of the NEH is O(n*).

The tabu list is based on pairs of adjacent jobs or arcs,
and is implemented as a matrix 7' indexed by jobs. Its ele-
ment 7|, , = ¢ means job i cannot be the immediate prede-
cessor of job j until iteration ¢ (included)and initially T}, ,
=0. When a move is applied to the current solution, the
arcs deleted from the current solution are put into 7. A
move is tabu if any arc it adds into the current solution is ta-
bu-active. A tabu move is aspired if its maximum lateness is
less than the one of 77" . If there is no available move in the
neighborhood, the TS enters the next iteration and does

nothing.

A random dynamic tabu tenure method is adopted'” . If a
job pair(i, j)is added to the tabu list at iteration i, then
T, ,=i+rwith re U[0.4n, 0.6n] 51 'When several job
pairs are added to the tabu list at the iteration, their tabu
tenures are possibly different.

TS algorithms corresponding to three neighborhoods are
denoted as TS _ BE, TS _SBE and TS _BS. The union of
SBE and BS is also tested and its tabu search algorithm is
denoted as TS _SBE + BS. To fairly compare the neighbor-
hoods, a fixed CPU time is used as the termination condi-
tion.

4 Computational Experiments

Four proposed TS algorithms are compared with SGALS
and IGLS'"”'. The 800 instances in Ref. [9] are adopted,
which are generated by controlling problem characteristics:
n ={20, 40, 60, 80, 100} and m = {5, 10, 15, 20}. Pro-
cessing times are generated from the uniform range UJ[ 1,
100], while due dates are from U[P(1 -T-R/2), P(1 -T

m-1
+ R/2)],

shere P = LB(Co) = min (S1,,)+

Y ¢,/ is a lower bound on the makespan; T is the tardi-

i=1
ness factor and R is the relative range of due dates. Four
different combinations of 7' = {0.0, 0.6} and R = {0. 2,
0.6} are tested.

Since there is no zero objective function value in our ex-
periments, the following transformed ARPD ( TARPD),

LH _ LBes(
TARPD = 100 max o max
R ‘L esi ‘

max

, is used as the response vari-

Best

able, where L is the best maximum lateness found during

max
Best

our experiments and | L>" | is the absolute value of L
All the algorithms are programmed in Java and run on a PC
with an Intel Pentium 4 CPU(2. 93 GHz) and 1 GB of main
memory for the same CPU time set to 30nm ms''. Each al-
gorithm runs five replications on each instance, i.e., R =
5. The computational results are given in Tab. 1.

As shown in Tab. 1, among three neighborhoods when
used in the TS, BS is the best and BE is the worst. The
union of SBE and BS is superior to any single neighbor-
hood. The poor performance of BE indicates that the neigh-
borhood type is more important than its size. For example,
BS is averagely better than SBE by 1. 88% in solution qual-
ity. This observation is also in accordance with the conclu-
sion that the insertion neighborhood is better than the ex-
change neighborhood"”™, since BS is an extension of the
insertion neighborhood while SBE is an extension of the ex-
change neighborhood. Moreover, all the TS algorithms
using O(n’) neighborhoods outperform SGALS and IGLS.
Especially, TS _ SBE + BS averagely outperforms IGLS by
2.87% .

The problem parameters can also affect the performance
of tested algorithms. As shown in Tab. 1, the group of in-
stances with 7 =0 and R = 0.6 seems harder than other
groups, on which all the tested algorithms generate larger
TARPD. Fig. 1 depicts the impact of the job number on the
performance of the tested algorithms, where the TAPRD is
averaged on all the instances with the same job numbers. As

Best
max *
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shown in Fig. 1, the performance of all the tested algorithms
deteriorates as the job number increases. However, TS _

SBE + BS and TS _BS are less sensitive to the job number
than the others.

Tab.1 TARPD of tested algorithms when the CPU time is set to 30nm ms

T R n TS _BE TS _ SBE TS _BS TS _ SBE + BS SGALS IGLS
0 0.2 20 0.01 0.01 0 0 0.08 0
0 0.2 40 1.72 0.85 0.36 0.07 1.32 1.36
0 0.2 60 4.95 2.43 1.43 0.6 3.07 4.36
0 0.2 80 6. 65 2.56 1. 84 0.58 5.2 7.35
0 0.2 100 8. 84 3.08 1.76 0.57 5.82 8.17
Average 4.43 1.79 1.08 0.36 3.1 4.25
0 0.6 20 0.25 0.21 0 0 0.74 0
0 0.6 40 16.5 8. 04 1.93 0.75 5. 86 4.16
0 0.6 60 18.8 9.06 6.58 2.33 11 12.8
0 0.6 80 33.1 15.8 10.2 4.53 16.8 23
0 0.6 100 55.1 21.1 12.6 8.52 23.6 35.2
Average 24.7 10. 8 6.25 3.23 11.6 15
0.6 0.2 20 0 0 0 0 0.02 0
0.6 0.2 40 0.75 0.45 0.15 0. 06 0.6 0. 47
0.6 0.2 60 1.24 0.67 0.35 0.31 0. 86 1.2
0.6 0.2 80 1.75 0.73 0.39 0.57 1.18 1.77
0.6 0.2 100 2.45 1.55 0.4 0. 88 1.55 2.22
Average 1.24 0. 68 0.26 0.37 0. 84 1.13
0.6 0.6 20 0.01 0.21 0 0 0.04 0
0.6 0.6 40 1.59 1.52 0.25 0.35 0.7 0.36
0.6 0.6 60 2.7 2.57 0.57 0.94 0.99 1.09
0.6 0.6 80 3.47 2.87 0.54 1. 41 1. 19 1.51
0.6 0.6 100 11.7 3.71 0.58 2.09 1.45 1.79
Average 3.9 2.17 0.39 0.96 0.87 0.95
Total average 8.58 3.87 1.99 1.23 4.1 5.34
200 _a TS BE outperforms the best existing algorithms by 2.87% . The
B 1cis instance group with 7=0 and R =0. 6 seems more difficult
161 s SGALS

14r o 1S_SBE
al12r —>— TS_BS

10 —=— TS_SBE + BS

|
20 40 80 100

60
Job number

Fig. 1 Impact of job number on the average performance of
tested algorithms

5 Conclusion

For the no-wait flowshop scheduling problem with maxi-
mum lateness criterion, three job-block-based neighbor-
hoods and their speedup properties are presented. The
speedups can evaluate a neighbor in constant time and they
are applicable to any number of machines. The neighbor-
hoods are compared with each other in the tabu search and
the resultant algorithms are compared with the existing al-
gorithms.

Among the proposed neighborhoods when used in the ta-
bu search, the block swap is the best. The union of the
block swap and the simplified block exchange is more ef-
fective than any single one of them. All the tabu search al-
gorithms with O(n’) neighborhoods outperform the existing
algorithms and are also less sensitive to the increase in the
job number. Especially, the tabu search with the union of
the simplified block exchange and the block swap averagely

than other groups.
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