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Abstract: To resolve the ontology understanding problem, the
structural features and the potential important terms of a large-
scale ontology are investigated from the perspective of complex
networks analysis. Through the empirical studies of the gene
ontology with various perspectives, this paper shows that the
whole gene ontology displays the same topological features as
complex networks including “small world” and “scale-free”,
while some sub-ontologies have the “scale-free” property but no
“small world” effect. The potential important terms in an
ontology are discovered by some famous complex network
centralization methods. An evaluation method based on
information retrieval in MEDLINE is designed to measure the
effectiveness of the discovered important terms. According to the
relevant literature of the gene ontology terms, the suitability of
these centralization methods for ontology important concepts
discovering is quantitatively evaluated. The experimental results
indicate that the betweenness centrality is the most appropriate
method among all the evaluated centralization measures.
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An ontology is an explicit shared specification of the
conceptualization of a domain " which has attracted
a surge of researches and has been used in many disciplines.
In recent years, more and more ontologies have been pub-
lished and widely used in the web. As a result, the scale
and the complexity of the ontology are increased rapidly,
which require more prior knowledge and efforts to under-
stand. The gene ontology(GO)is a widely used ontology in
bioinformatics which is appropriate to unify the representa-
tion of gene and gene product attributes across all species' .
However, with the rapid development of bioinformatics, the
tremendous scale of the gene ontology has become one of
the most common obstacles for its understandability and usa-
bility. So it is necessary to study the methodology of ontol-
ogy understanding" to enhance the usability of large-scale
complex ontologies such as the gene ontology.

Complex network analysis has been a hot research area in
recent years. In the empirical studies of real-world networks,
some topological features that never occur in simple networks
such as lattices or random graphs have been observed, for ex-

ample, six degrees'!, scale-free”” and so on. All the real-
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world networks that have such non-trivial features are named
as complex networks. The topological features of complex
networks are further studied. Thus many network properties
and analysis methods have been proposed and widely used in
many real networks applications, such as link analysis'”, bi-
ological network analysis'” and so on. Large-scale ontologies
are developed and maintained by experts; the network repre-
sentations of such ontologies may also have some non-trivial
features. So it is natural to investigate the structure and im-
portant concepts/relations by utilizing the complex network
analysis methods. According to this idea, this paper studies
the topological features of the gene ontology insight from the
complex network analysis and utilizes various networks cen-
tralization methods to discover the potential important terms
in the gene ontology. Furthermore, this paper retrieves the
relevant biological papers in the MEDLINE database to eval-
uate whether the discovered important terms are really widely
studied by biologists.

1 Discovering Complex Network Features of Gene
Ontology

1.1 Graph representation of ontology

An ontology defines the concepts, individuals and rela-
tions in a certain domain; it is natural to represent the con-
cepts/individuals as vertices and relations as directed edges.
Given ontology O, the corresponding graph representation G
is defined as follows:

Definition 1 A directed graph G = (V, E)is a corre-
sponding graph of a given ontology O, where V is the set of
vertices representing all the terms in O, and E is the set of
edges representing all the relations.

Definition 1 is suitable for simple ontologies. However,
the gene ontology is more complex. Unlike the simple on-
tology, the gene ontology contains three domains: a cellular
component, a biological process, and a molecular function.
So the gene ontology can be referred to three ontologies or
an ontology consisting of three sub-ontologies. Whether the
sub-ontologies have the same topological features as the
gene ontology is also needed to be investigated. Further-
more, there are three types of links in the gene ontology
such as is _a, part_of and regulates. Different types of links
represent different semantics of the relationships between the
terms, which suggests that the sub-graphs only containing a
certain type of links may have some distinct structural fea-
tures. For a comprehensive analysis of the gene ontology,
this paper defines the concept of view for a given ontology.

Definition 2 A view of a graph G = (V, E) is a directed
sub-graph V, =(V,, E)) of G, where V,CV, E CE. Each
vertex and edge in V is selected based on its semantic/do-
main.

In this paper, seven views of the gene ontology are gener-
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ated from different perspectives. These views include the
sub-graphs only containing a certain domain, the sub-graphs
only containing a certain type of relationship, and the graph

of the whole gene ontology. The statistical information and
the topological features are shown in Tab. 1 and discussed in
section 1. 2.

Tab.1 The statistic information of different views of the gene ontology graph

Graph Vertices Edges Diameter Average distance Max degree « R?
Gene ontology 27 650 48 425 15 3.78 574 2.54 0.957
Biological process 16 667 33 867 15 3.74 145 2.62 0.927
Cellular component 2 366 4 531 10 3.16 524
Molecular function 8 602 10 024 11 3.28 263 2.07 0.958
Is _ a relation 27 636 40 327 13 3.77 524 1.72 0.911
Part _ of relation 5262 4347 37
Regulates relation 5185 3751 3
1.2 Topological features of gene ontology 10 |
As shown in Tab. 1, the diameter of the whole gene on- = 8 @  Degree distribution
tology network is 15, while the average distance is only S Fitted power curve
3.78. The diameters of the sub-graphs of the three domains =2 6®
are also comparatively small. For example, the diameter of c«:
the molecular function sub-ontology is 11, and the average B 4?
distance of this big graph containing over 8 000 vertices is —E *
only 3. 28. So it is believable that the gene ontology and its “ M
three sub-ontologies obviously show the “small-world” fea- \! y =51 3935252
ture. However, the views based on relations do not display 0

the same feature. These views except the is_ a relation
based view are divided into more than 1 000 components
and isolated vertices. So we consider that the views based
on relations do not display the small-world feature, and al-
so do not correctly reflect the nature of the gene ontology
because of the lack of connectivity.

The scale-free feature indicates the fact that the structural
feature and the dynamics of the networks are independent of
the scale. A distinguishing characteristic of scale-free is the
distribution of degrees following a power-law, which sug-
gests that there exist a few active nodes in the network con-
nected with many edges and there exist many common
nodes only connected with a few edges. For example, an
empirical study of the Internet indicates that the in-links of
most pages are no more than 4, while 0. 01% pages occupy
over 80% of the in-links'""’.

The power-law distribution suggests that the probability
that a node is connected to other nodes k is p(k) = Ck™“,
where C is a constant parameter, and « is the exponent of
the power-law.

Fig. 1 (a) shows the degree distributions of the whole
gene ontology. We can learn from this figure that the de-
grees of the gene ontology follow a power-law distribution.
The dotted curve shows the best power-law curve that is
most in accord with the degree distribution of the gene on-
tology. It also illustrates the scale-free feature of the gene
ontology. As listed in Tab. 1, the exponent o of the fitted
curve is 2. 54, which follows the rule that the exponent of
most real-world complex networks ranges from 2 to 3"'.
The corresponding determination coefficient R* is 0. 957,
which demonstrates the high quality of the fitting cure on
the distribution of data.

However, the degree distributions of the sub-ontologies
except for those of the molecular function do not obviously
follow the power-law. As shown in Fig. 1(b), the degree
distribution of the biological process sub-ontology is not in
accordance with the best fitting curve, especially at the
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Fig. 1 Degree distribution of the gene ontology graph. (a)

Gene ontology; (b) Biological process sub-ontology

small degrees. The corresponding determination coefficient
R’ shown in Tab. 1 also indicates the quality of the fitting
curve is not so good as that in Fig. 1(a).

In conclusion, the graph representation of the whole gene
ontology is a complex network, which displays the same
topological features since complex networks include “small-
world” and “scale-free”. Three sub-ontologies show obvi-
ous small-world features as being the same as the whole on-
tology. However, the degree distributions of the sub-ontol-
ogies except for those of the molecular function do not ob-
viously follow the power-law. Furthermore, the views from
the link types may not correctly reflect the nature of the
gene ontology because of the lack of connectivity.

2 Finding Important Terms

How to discover the potential important concepts in a
large-scale ontology is important for ontology understand-
ing. Sociologists and mathematicians have proposed a surge
of complex network centrality measures, such as closeness
centrality and so on. In this section, we adopt and evaluate
these centrality measures to discover the potential important
terms of the gene ontology.
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2.1 Centrality measures

In the social network analysis area, there are two well-
known measures for evaluating the importance of nodes:
the betweenness centrality, the proportion of all shortest
paths in the network that run through a given node, and the
closeness centrality, the average distance from the given
node to every other node in the network® . Sociologists
have also proposed a simple but effective measurement to
evaluate the importance of nodes at local environments and
local centrality'”, which evaluate the importance of nodes
according to the nodes’ degrees.

For a given graph G =(V, E) with n vertices, the local
centrality C,(v) for vertex v is defined as

deg(v)
n-1

Cy(v) =

where deg(v)is the degree of v.
The closeness centrality C.(v) for vertex v is defined as

1
Y dis(v, 1)

teV\v

C(v) =

where dis(v, f)is the geodesic distance from vertex v to t.
The betweenness centrality C,(v) for vertex v is defined
as

C(v = 8,00, 8,0 =2

SFELFV st

where 9, is the number of the shortest paths from vertex s
to t, and 9,(v) is the number of the shortest paths from s
to ¢ that pass through v.

In the information retrieval research area, many algo-
rithms based on hyperlinks have been proposed to rank the
importance of web pages, such as PageRank!"”', HITS'""
and so on. Recently, these algorithms have also been wide-
ly used in complex network analysis applications. In this
paper, we evaluate the effectiveness of the HITS algorithm
for discovering the important terms in the gene ontology.
The HITS algorithm is an iterative algorithm that exploits a
mutual reinforcing relationship between hub pages and au-
thority pages. The hub score and authority score for a ver-
tex is calculated by the following steps''"':

1) Assign each vertex with the same hub score and au-
thority score, and usually the score is 1;

2) Update each vertex’s authority score to be equal to the
sum of the hub score of the neighbors that points to it;

3) Update each vertex’s hub score to be equal to the sum
of the authority score of the neighbors that it points to;

4) Normalize the values of the hub scores and authority
scores;

5)Repeat 2) for k times.

2.2 Measure selection

The aforementioned centrality measures depict the poten-
tial structural important vertices in different ways. For in-
stance, the local centrality measures the importance of ver-
tices at local environments, while the betweenness centrali-
ty measures the importance of vertices based on the contri-
butions on the graph connectivity. Which measure is more

appropriate for discovering the real important terms in the
gene ontology at the semantic level is an interesting prob-
lem. We develop a centrality measure evaluation strategy to
evaluate these methods in two aspects: the effectiveness
and the efficiency.

To evaluate the effectiveness of the aforementioned cen-
trality measures, we turn to get help from the MEDLINE'"”!
database. MEDLINE is a literature database of life sciences
and biomedical information, which covers most literature in
biology and biochemistry, and other fields such as molecu-
lar evolution and so on. As the most famous and the big-
gest scientific literature database, MEDLINE contains more
than 18 million records from more than 5 000 selected pub-
lications since the 1950s. The database is freely accessible
via the PubMed information retrieval interface.

It is clear that the most attention-getting concepts are
probably important concepts in the domain. So this paper
utilizes the number of related scientific papers to evaluate
the importance of gene terms. For a given gene term, this
paper retrieves the relevant papers in MEDLINE that men-
tioned the term in title or abstract. The number of papers is
an objective and reasonable measure to evaluate whether a
concept is more important than another. We use the afore-
mentioned centrality measures to rank the importance of the
terms in the gene ontology. For each ranking list, we select
the first ten terms with the highest value to count their rele-
vant papers in MEDLINE. We also randomly select ten
terms for comparative study.

The gene ontology is a large-scale ontology with more
than 27 000 terms; the execution time of the centrality
measures is an important factor that should be considered.
We investigate the computational complexity of the afore-
mentioned algorithms to consider that whether these algo-
rithms are tractable when running on the gene ontology. If
the quality of ranking results is almost at the same level,
we consider the algorithm that costs less time is more suit-
able for large-scale ontology centralization. Tab.2 shows
the computational complexity of the aforementioned meas-
ures for a given graph with n vertices and e edges.

Tab.2 The complexity of the centrality measures

Measure Complexity
Local centrality O(e)
Closeness centrality o(n*)

Betweenness centrality
HITS Algorithm

O(n*logn + ne)
O(kn?)

As shown in Tab. 2, the computational complexity of the
local centrality only relies on the number of edges e, which
is much smaller than that of other methods. The complexity
of the HITS algorithm relies on the square number of verti-
ces n and the number of iterative steps k. However, the be-
tweenness centrality and the closeness centrality are much
more extortionately and computationally expensive. These
two measures need more than several minutes to rank the
importance of all the vertices on large-scale ontologies such
as the gene ontology, which is unacceptable for many real
applications. To avoid this problem, we adopt the approxi-
mate centrality analysis methods based on CDZ shortest
paths approximation'”', which is especially effective and
efficient for complex network analysis. With this approxi-
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mation, the computational complexity of both the closeness
centrality and the betweenness centrality measures can be
reduced to O(nlogn +e).

2.3 Experiments

At first, the four mentioned important concepts ranking
methods are executed on the gene ontology and the first ten
terms with the highest ranking score are obtained. The top
10 most important terms of these methods are shown in
Tabs.3 to 6. Then these potential important terms are re-
viewed by domain experts to evaluate the semantic coverage
of the gene ontology. For each ranking list given by differ-
ent methods, three groups of 10 randomly selected terms
not in top 500 are used to compare with the top 10 terms
discovered by those centrality measures. These terms are
used to query the MEDLINE, and then the number of rele-
vant papers is summed by group. The average number of
relevant papers of three random groups and the number of
relevant papers of the top 10 terms are then used to evaluate
the correctness of the discovered elements. The compara-
tive results are shown in Fig. 2.

Tab.3 The top 10 most important terms
based on betweenness centrality

Id Terms Papers
9467 Biological process 1614
8754 Catalytic activity 17 039
5974 Molecular function 867
2063 Protein modification process 1 456
24097 Cellular process 743
23044 Metabolic process 812
5992 Regulation of biological process 155
11253 Cellular protein metabolic process 48
18880 Transfer activity 879
8446 Regulation of cellular process 363

Tab.4 The top 10 most important terms
based on closeness centrality

Id Terms Papers
9467 Biological process 1614
24097 Cellular process 743
5974 Molecular function 867
23044 Metabolic process 812
5992 Regulation of biological process 155
24027 Developmental process 786
11203 Response to stimulus 2 784
4967 Biological regulation 1532
21507 Immune system process 452
16032 Cellular metabolic process 137

Tab.5 The top 10 most important terms based on HITS algorithm

Id Terms Papers
20969 Membrane coat 155
9716 Respiratory chain complex Il 205
22220 Proton-transporting ATP synthase 266
8653 NADH dehydrogenase complex 132
12413 APC-IQGAP1-Cdc42 complex 42
3215 Acetate CoA-transferase complex 13
23096 Biotin carboxylase complex 22
8271 Junctional membrane complex 167
20022 Karyopherin docking complex 16
1499 Nupl07-160 complex 6

Tab.6 The top 10 most important terms based on local centrality

Id Terms Papers
19916 Protein complex 747
Oxidoreductase activity, acting

10531 on the CH-OH group of donors 0
20831 Cytoplasmic part 254
20845 Plasma membrane part 195
24471 Anatomical structure development 61
10618  Oxidoreductase activity, acting on paired donors 0
10735 Hydro-lyase activity 209
20812 Intracellular part 642
10294 Kinase activity 1255
6649 S—adenosylmethlonme-d(;pefndent 36
methyltransferase activity
Br O Top 10

S 201 @ Random
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Fig.2 Number of retrieval papers of the most important

terms given by different measures

As shown in Fig. 2, the relevant papers in MEDLINE of
the gene ontology terms suggest that the betweenness cen-
trality and the local centrality are more suitable for potential
important terms discovering than the other two algorithms.
The relevant papers of the top 10 most important terms with
the highest betweenness/local centrality value are much
more than that of random selected 10 terms. The important
terms discovered by the closeness centrality also display a
similar phenomenon but not so dramatically. However, the
relevant papers of the important terms discovered by HITS
indicate that the importance ranking based on HITS does
not reflect the popularity of the gene ontology terms in
MEDLINE.

However, based on the human evaluation, most of the
top 10 terms discovered by the local centrality are not the
basic concepts of the gene ontology, such as the term
“6649” and “10531”. Furthermore, these top 10 terms can-
not describe the main semantics of the gene ontology. For
instance, most of these terms are in the domains of the cel-
lular component and the molecular function, while there are
scarcely any terms in the domain biological process which
is regarded as one of most important concepts. The human
evaluation suggests that the top 10 terms in Tab.3 and
Tab. 4 are more suitable to represent the outline of the gene
ontology than the top 10 terms in Tab. 6. The terms, espe-
cially in Tab. 3, include the most basic concepts in the gene
ontology and represent the major semantics of the gene on-
tology, which suggests that the importance ranking list gen-
erated by the betweenness centrality are more reasonable.

According to the human evaluation and the number of
relevant papers, this paper suggests that the betweenness
centrality is the best important terms discovering method
among the aforementioned methods. To overcome the com-
plexity limitation, this paper suggests adopting the shortest
path approximate algorithms such as CDZ. If the scale of
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the ontology is too large to run the betweenness centrality
method, the local centrality which can obtain a good bal-
ance between effectiveness and efficiency is suggested.
However, the gap between the number of relevant papers
for important terms and those for randomly selected terms is
not sufficient enough. For instance, the random selected
terms can obtain even more than 20 000 relevant papers
when evaluating closeness centrality. The human review of
these terms also indicates that some terms are not so impor-
tant to the semantics of the gene ontology. Because the
gene ontology is more of a hierarchy structure than a net-
work, while the centrality measures are proposed to discov-
er the important vertices in a network structure. Further-
more, the importance of the ontology terms relies more on
the semantics than the structures, which indicates that the
discovering methods only taking the structure information
into account may be not sufficient. So it is necessary to
find more reasonable importance ranking based on both the
topological features and the semantics of the ontology.

3 Conclusion

This paper investigates the structural features and the po-
tential important terms of large-scale ontology from the per-
spective of complex networks analysis. Through the empiri-
cal studies of the gene ontology with various perspectives,
this paper shows that the whole gene ontology displays the
same topological features as complex networks including
“small world” and “scale-free”, while some sub-ontologies
have the “scale-free” property but no “small world” effect.
This paper also adopts and evaluates some centralization
methods to discover the potential important elements of the
gene ontology. According to the relevant papers of a given
gene ontology term in MEDLINE, this paper evaluates
which centralization method is more suitable for ontology
important concepts identification. The experimental results
indicate that the betweenness centrality is the best method
among the evaluated centralization measures. As future
work, we plan to focus on the further study of potential im-
portant terms discovering based on both the complex net-

work features and the semantic of ontology to obtain a more
reasonable importance ranking of concepts on the large-
scale ontology.
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