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Abstract: Due to the fact that the emergency medicine
distribution is vital to the quick response to urgent demand when
an epidemic occurs, the optimal vaccine distribution approach is
explored according to the epidemic diffusion rule and different
urgency degrees of affected areas with the background of the
epidemic outbreak in a given region. First, the SIQR
(susceptible, infected, quarantined, recovered) epidemic model
with pulse vaccination is introduced to describe the epidemic
diffusion rule and obtain the demanded vaccine in each pulse.
Based on the SIQR model, the affected areas are clustered by
using the self-organizing map (SOM) neutral network to qualify
the results. Then, a dynamic vaccine distribution model is
formulated, incorporating the results of clustering the affected
areas with the goals of both reducing the transportation cost and
decreasing the unsatisfied demand for the emergency logistics
network. Numerical study with twenty affected areas and four
distribution centers is carried out. The corresponding numerical
results indicate that the proposed approach can make an
outstanding contribution to controlling the affected areas with a
relatively high degree of urgency, and the comparison results
prove that the performance of the clustering method is superior to
that of the non-clustering method on controlling epidemic
diffusion.
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he breakout of severe acute respiratory syndrome

(SARS) in 2003 profoundly shocked us and the advent
of influenza A (HIN1) has now sharply alarmed us that epi-
demics have always been one of the strongest enemies
threatening our lives and property. When an epidemic
breaks out, the key challenge for us is whether the medicine
can be efficiently distributed to the affected areas in order to
control the epidemic diffusion.

A majority of pioneering studies have made great contri-
butions in this area. On the one hand, some scholars have
put forward fresh views on how to effectively control the
diseases'' ™. For example, Shulgin et al. """ drew the impor-
tant conclusion that the system converges to a stable point
where the number of infected individuals equals zero under a
planned pulse vaccination using the SIR epidemic model. It
is usually difficult to control the spread by a one-time vacci-
nation, and thus a planned pulse vaccination is an effective
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way to control the epidemic. On the other hand, the re-
search on relief distribution has been the core in the scope of
emergency logistics”™ . A very recent study by Wang et
al. ! developed a multi-objective stochastic programming
model with time-varying demand and conducts sensitivity
analysis of the latent period based on the SEIR model.

Nevertheless, it is not difficult to find that few papers are
dedicated to the research on the effective distribution with
respect to different degrees of urgency of the affected areas,
which is the objective of this paper. Unlike those pioneering
studies, this paper is unique in quantitatively incorporating
the clustering results into the vaccine distribution model and
concentrating on establishing the optimal vaccine distribution
approach according to different degrees of urgency of the af-
fected areas. We suppose that an epidemic breaks out in m
areas, and there are n distribution centers around these af-
fected areas. Based on the epidemic diffusion rule, we pro-
pose a feasible plan to dynamically distribute the vaccine un-
der the condition of inadequate supplies of vaccine before
each pulse vaccination.

1 SIQR Epidemic Diffusion Model

Due to the great difficulty in eradicating the epidemic by
a one-time vaccination, we use the pulse vaccination meth-
od with a low vaccination rate to control the epidemic.
Thus, the SIQR epidemic model with pulse vaccination
close to the actual situation is employed to obtain the
amount of vaccine demanded. The SIQR epidemic model
with pulse vaccination is adopted'” as
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S(¢7) =(1-p)S(1), R(t") =R(t) +pS(1)
where S(kr ") =1limS(kr + 1), R(kr") = limR(kr + A).

In this epidemic diffusion model, S(¢), I(t), Q(?) and
R(1) are the time-based parameters, denoting the number of
susceptible people, the number of infected people, the num-
ber of the quarantined people and the number of recovered
people, respectively. d is the natural birth rate and mortality
rate of the population; B is the propagation coefficient of
disease; y and # are the removal rate constants from groups
I and Q, respectively; & is the rate constant for individuals
leaving the infectious compartment and [ for the quarantine
compartment Q; «, and «, are the extra disease-related death

t=kr; k=1,2 ...
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rate constants in classes / and Q, respectively. The pulse
vaccination is applied every 7, and p denotes the successful
proportion of those vaccinations. Therein, parameters d, 3,
vy, 6, 8, p and 7 are positive constants, and «, and «, are
non-negative constants. Dai and Zhao'"” studied the rela-
tionship between the pulse vaccination period and the vacci-
nation rate in the SIQR model, and determined the minimal
vaccination rate p, which is given by

dT(e” -1)(B-6-y-d-a,)
Be” 1) —dT(B-6-y-d-a,)’
(e"T—l)(B—B—y—al)}

S+vy+a

p:min{

2 Dynamic Vaccine Distribution Model

To facilitate the progress of model formulation, we make
the following three assumptions: 1) The locations of the
distribution centers are previously known; 2) Affected areas
are isolated from each other without population mobility
when an epidemic strikes; 3) There are enough vehicles to
deliver the vaccine without loss.

2.1 Clustering affected areas

The SOM neural network is carried out to cluster the af-
fected areas in this section. The merit of the SOM neural
network is that it can automatically classify the affected are-
as with similar degrees of urgency according to the given
evaluation indices instead of artificially establishing the eval-
uation function. Before each pulse, three attributes are se-
lected as the severity determinants of the clustering affected
areas, which are specified:

1) w}(t) represents the percentage of the number of sus-
ceptible people relative to the total number of the population
in a given affected area j;

2) wf( t) represents the percentage of the number of in-
fectious people relative to the total number of the population
in a given affected area j;

3) w;(t) represents the percentage of low-immunity peo-
ple relative to the total number of the population in a given
affected area j.

The concrete operation procedures of the SOM algorithm
are summarized in the following three steps:

Step 1 Input the primary parameters of the SOM, invol-
ving the number of input neurons, the number of output
neurons, the number of input data, the learning iteration,
and the learning coefficient. In addition, the initial weight
matrix M is stochastically generated.

Step 2 Conduct the following three sub-steps for each
input vector v, ={v,, v,, ..., v, } sequentially, where i =
1,2, ..., s; s is the total number of input data points and k
is the number of neurons in the input layer. Note that k is
also the number of features for an input point.

1) Calculate the Euclidean distance [, between the input
vector v; and the output neuron u;. That is, [, = Hv[ —ujH
where u; = {u].,, Ups e ujk}; j=1,2,...,rand r is the
number of the output neurons.

2) Find the output neuron u;. with the minimum Euclide-
an distance between the output neurons and the input vector.
Mathematically, it is represented as [,;, = min [,.

Jj=L2,.r

3) Update the weights of the output neurons u,. using u;™"
= u +o(v,—u), where o is the learning rate.

Step 3 Decrease the learning rate o and repeat step 2
until the stopping criteria of the learning process are
reached.

Suppose that all the affected areas are classified into three
groups using the SOM neural network. The priority of each
affected area is given by

V(D = X @, w0 (3)

where wﬁ( 1) represents the mean value of the attribute s as-
sociated with the group that has affected area j and &' repre-
sents the weight associated with a given attribute s, which is
specified to determine the significance of the corresponding
attribute.

2.2 Cluster-based vaccine distribution model

Based on the results of the epidemic diffusion rule and
clustering the affected areas, two objective functions are
proposed to establish the optimal plan to distribute the vac-
cine: one is to minimize the distribution costs while penalty
should be given if the transportation time exceeds the time
threshold; the other is to minimize the unsatisfied demand in
each pulse vaccination. Therein, Fjl.k(t) and Ff.k(t) are giv-
en by

min F'(1) = Y Y i(c,jxfj(t) +B,max{0, t, - T'})

Yk V) i=1
V(k, j); t =kr (4)
min F(1) = Y Y DMi(1) = Y Y > xi(1)
Yk Yj Yk Vj i=1
V(k, j); t =kr (5)

where ¢, is the unit transportation cost from distribution cen-
ter i to affected area j, t; is the time needed from distribu-
tion center i to affected area j; T* is the time threshold (Pen-
alty should be given if exceeding T); B, is the penalty coef-
ficient (The cost is increased if punished); DMf( t) is the
amount of demanded vaccine distributed to the affected
area; xf;( t) is the decision variable denoting planned amount
from distribution center i to affected area j.

Then F}k( t) and ka( t) are normalized as

F“(1) = F}“(1)

min F*(£) = —- i V(k j)it=kr
! F_/] (I)max_F; (t)min
(6)
FX -F )
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(7
where F;k( 1) .. and F}k( t) ... represent the expected maxi-

mum and minimum values associated with F;k( t), while
2k 2k
F (1), and F;" (1)
minimum values associated with sz.k(t).
Considering different priorities and effects of the two ob-
jectives mentioned above, the weight is introduced to in-

o i, Tepresent the expected maximum and
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tegrate the two objective functions into a composite optimi-
zation problem. The composite objective function Ff(t) is
given by

min F (1) =, F;'(1) +u, F"(1)
Yk, j); t=kr (u, +p, =1) (8)

Extended from Eq. (8), the aggregate function with multi-
ple affected areas is formulated below, which involves the
distribution priority associated with each affected area deter-
mined in the previous phase.

Ykt =kr
9)

where wf(t) is the weight associated with each affected

min F'(¢) = i(l —wf(l))Ff(l)

area, and it is defined as

k
(t
Wit =10 (10)
> v
j=1
In addition, three constraints are given below:
Df(t)=pk5j(t_) (11)
Y xj(n) < CAP, < DM;(1) (12)
j=1
x,(1) =0 (13)

where D.f( t) is the planned amount distributed to the affect-
ed area j; and CAP, is the capacity of the distribution center
i

Eq. (11) represents the total amount of demand vaccine
for the affected area j and it is obtained from the SIQR epi-
demic model. Eq. (12) ensures that the capacity of each
distribution center is large enough to supply the vaccine.
Eq. (13) indicates a feasible domain of the decision variable
x5 ().

If the amount of vaccine distributed to the affected area j
cannot be satisfied, DM**'(#) will be regulated.

I

Accordingly, DM;"'(1) is given by

AD(1) = Dj(1) - Z{xij(t) } (14)
DM;* (1) = DM;" (1) — AD{(1)

k=1,2,..; t=kr
where DM; (1) =D (1).
3 Numerical Example

In this section, we take an example to demonstrate the
availability of the proposed method when measles strikes.
Suppose that m =20, n =4 and p =0. 15. The initial data of
the twenty affected areas are shown in Tab. 1. Therein, the
initial values of susceptible people and infected people are
generated stochastically, following a normal distribution.
The value of the total population is the sum of that of sus-
ceptible people and infectious people. Besides, the young

people at the age of 15 to 25 are considered as the low-im-
munity people since they are more vulnerable to the mea-
sles, and their number is also stochastically obtained follow-
ing a normal distribution. The estimated cost and time nee-
ded from each distribution center to each affected area are
listed in Tab. 2. Tab. 3 summarizes the primary parameters
in this paper, which is composed of two parts: the parame-
ters of the SIQR epidemic diffusion model and the parame-
ters of the vaccine distribution model. In the vaccine distri-
bution model, there four distribution centers and the corre-
sponding capacities are 380, 350, 420 and 400, respective-

ly.

Tab.1 Initial data of the affected areas
Affected Total Susceptible Infected . .
area population people people Low-immunity
1 1442 1327 115 326
2 867 834 33 194
3 1 686 1 550 136 442
4 1 796 1615 181 219
5 1107 1 041 65 353
6 2119 1 976 143 322
7 2 138 1976 163 208
8 1 505 1485 20 83
9 1 659 1 631 28 294
10 1 698 1 570 129 199
11 1 505 1425 80 361
12 1925 1790 134 351
13 1 406 1265 141 469
14 2 509 2373 136 359
15 1610 1 445 165 236
16 1 679 1 546 133 338
17 2 086 1927 160 199
18 1564 1524 40 298
19 1561 1 462 99 295
20 1259 1167 92 140
Tab.2 Cost and time
Affected Cost Time
area I I I} v I I I} v
1 3 4 7 8 3 2 5 4
2 4 5 6 8 2 1 4 6
3 7 6 6 8 5 4 4 6
4 5 4 6 9 2 2 4 7
5 6 7 5 7 4 5 3 5
6 4 5 4 5 2 1 2 1
7 8 6 5 4 6 4 1 2
8 3 4 7 5 1 1 5 2
9 8 9 5 6 6 7 2 4
10 3 5 3 2 1 3 2 2
11 4 8 4 5 2 6 2 1
12 4 5 6 4 1 3 4 2
13 5 8 6 3 3 6 4 2
14 9 5 6 7 7 3 4 5
15 4 5 7 6 2 2 5 4
16 3 2 5 3 1 2 3 2
17 4 4 4 4 3 3 2 1
18 5 3 6 8 3 5 3 5
19 5 7 5 4 2 5 3 3
20 5 3 8 4 3 2 6 4
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Tab.3 Primary parameters in this study

SIQR model Dynamic vaccine distribution model
d B 6 v o a, 0 w; @) w3 M M2 B; T
1075 5x107* 0.3 0.002 107 5x10° 0.3 0.5 0.25 0.25 0.3 0.7 10 3

Based on the related data and parameters, the proposed
method is carried out to establish the distribution plan. The
time interval between two pulse vaccinations is set to be 5 d
and the vaccination rate is incremented 0. 15 in each pulse.
Conveniently, we study the two previous pulses, and the
amount of vaccine demanded can be obtained using Matlab
7.1 (see Tab.4). The SOM is employed to classify the
affected areas into three groups. The input vectors are the
attributes of the twenty affected areas. The output vector is
the result of the cluster. The epoch is set to be 10” and the
initial learning rate is 0. 5. Tab. 5 shows the results of clus-
tering the affected areas, indicating the urgency degree of
each group. Using Lingo as an optimal tool, the multi-
objective model can be solved and Tab. 6 shows the amount
of vaccine distributed to a given affected area in the two
previous pulses.

Tab.4 Amount of vaccine demanded

Affected area First pulse Second pulse
1 109 196
2 112 165
3 99 62
4 81 48
5 40 50
6 77 34
7 70 31
8 58 53
9 177 126
10 98 61
11 210 327
12 98 53
13 98 81
14 65 21
15 91 62
16 99 88
17 76 35
18 166 200
19 118 83

20 252 364

Tab. 5 Results of clustering the affected areas

Pulse  Group Number of affected area 'yj{”
1 2,8,9, 18 0. 625 145
First 2 5,6, 11, 12, 14, 19 0. 610 967
3 1, 3,4,7,10, 13, 15, 16, 17, 20 0.602 046
1 2,4,5,13,20 0.239 272
Second 2 1, 3,8,9, 11, 16, 18 0. 144 021
3 6,7, 10, 12, 14, 15, 17, 19 0. 125 467

Comparing Tab. 4 with Tab. 6, in the first pulse, it is
not difficult to determine that the amounts of vaccine de-
manded associated with areas 1, 11, 18, and 20 are not
satisfied, while it can be learned from Tab. 5 that areas 1,
11, and 20 are all listed in group 2 and group 3, the urgen-
cy degrees of which are both lower than those of group 1,
and area 18 is satisfied in part. In the second pulse, the un-
satisfied areas 1, 6, 11, 16 are all included in group 2 and

group 3. Due to the large demand associated with area 20,
a fraction of vaccine is carried to area 20. In the two previ-
ous pulses, the areas with high priority are basically satis-
fied, and the unsatisfied areas are mostly included in the
low priority group. As a consequence, we can draw the
conclusion that the proposed approach meets the objective
to effectively control the affected areas with a relatively
high degree of urgency when the amount of medicine is de-
ficient.
Tab. 6 Amount of vaccine distributed

Affected area First pulse Second pulse
1 0 94
2 112 165
3 99 62
4 81 48
5 40 50
6 77 0
7 70 31
8 58 53
9 177 126
10 98 61
11 0 195
12 98 53
13 98 81
14 65 21
15 91 62
16 99 0
17 76 35
18 93 200
19 118 83
20 0 130

In addition, to evaluate the availability of the clustering
method, we compare the numerical results with those ob-
tained without employing the clustering approach. Corre-
spondingly, we set wf( 1) =0.05; that is to say, the twenty
affected areas enjoy the same priority. The results show
that areas 9, 11, 18, 20 cannot be satisfied in the first
pulse, two of which are part of group 1. In the second
pulse, it is definitely unreasonable that the amount of vac-
cine distributed to area 20 is zero given that there is no vac-
cine distributed to area 20 in the first pulse. Accordingly,
the effect of the clustering method on controlling the epi-
demic diffusion is superior to that of the non-clustering
method, since the areas with relatively high degrees of ur-
gency are a priority for obtaining the vaccine using the clus-
tering method.

4 Conclusion

This paper presents a clustering method to establish a se-
ries of dynamic vaccine distribution operations for quickly
responding to urgent medicinal needs. Based on the SIQR
epidemic model with pulse vaccination, the amount of vac-
cine demanded is forecasted. By the SOM neural network,
the affected areas are clustered and the priority is deter-
mined. A cluster-based vaccine distribution model is for-
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mulated based on the two aforementioned mechanisms with
the goal of reducing the transportation cost and decreasing
the unsatisfied demand. The numerical results indicate that
the proposed approach helps to control the affected areas
with a relatively high degree of urgency and the comparison
results demonstrate the good performance of the clustering
approach applied to vaccine distribution. Nonetheless,
there is still great potential for improving the performance
of the distribution plan. One example is considering more
rescue materials, such as medicine, antibiotics, and so on.
Furthermore, more influential factors can be integrated into
the attributes for advancing the accuracy of the priorities as-
sociated with a given affected area. Overall, the clustering
approach can be employed by the decision-makers to effi-
ciently classify the affected areas based on different degrees
of urgency and make corresponding decisions scientifically.
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