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Abstract: In order to achieve better perceptual coding quality
while using fewer bits, a novel perceptual video coding method
based on the just-noticeable-distortion (JND) model and the
auto-regressive ( AR) model is explored. First, a new texture
segmentation method exploiting the JND profile is devised to
detect and classify texture regions in video scenes. In this step,
a spatial-temporal JND model is proposed and the JND energy
of every micro-block unit is computed and compared with the
threshold. Secondly, in order to effectively remove temporal
redundancies while preserving high visual quality, an AR model
is applied to synthesize the texture regions. All the parameters
of the AR model are obtained by the least-squares method and
each pixel in the texture region is generated as a linear
combination of pixels taken from the closest forward and
backward reference frames. Finally, the proposed method is
compared with the H. 264/AVC video coding system to
demonstrate the performance. Various sequences with different
types of texture regions are used in the experiment and the
results show that the proposed method can reduce the bit-rate by
15% to 58% while maintaining good perceptual quality.
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n the last two decades, image and video compression
I techniques have been developed greatly. The state-of-
the-art JPEG2000'"" and MPEG4 AVC/H. 264" greatly
outperform their predecessors in terms of coding efficiency.
All these methods attempt to remove spatial-temporal statis-
tical redundancy of the visual signal for compression. Un-
fortunately, a common problem is that the statistical redun-
dancy among pixels is considered as the only adversary of
compression, with perceptual redundancy being totally ig-
nored. That is to say, although the rate distortion for the
previous video compression standards is broadly adopted, it
does not completely reflect the particularity of human vi-
sion. Essentially, compression schemes and vision systems
face a similar problem, that is, how to represent visual ob-
jects in efficient and effective ways.

To further improve the coding efficiency, much pioneering
work™™' has been done by exploiting the human visual sys-
tem (HVS) limitations to develop an encoding system targe-
ted at the perception criterion rather than statistical fidelity.
In these works, some texture regions in video scenes, such as
flowers, grass, water and sand, which are not sensitive or
important to HVS, are first segmented and then reconstructed
by synthesizing.
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A coding scheme integrating the texture analyzer and the
synthesizer to the traditional hybrid coding framework was in-
troduced in Ref. [3], in which a multi-resolution quad tree of
scalable color descriptor is applied to segment an image by a
series of splitting and merging processes. After the segmenta-
tion, the affine model was used to synthesize the segmented
textured regions, rather than encoding them by traditional
methods. This approach achieves good performance for rigid
objects. However, it seems to have poor performance for
non-rigid objects. To overcome such a limitation, a texture
synthesis algorithm based on graph cut was proposed in Ref.
[4], which exhibits good performance for non-rigid objects.
Nevertheless, this approach has no superiority for rigid ob-
jects compared with Ref. [3]. Both these two algorithms uti-
lize statistical color information to perform image segmenta-
tion. In Ref. [5], a simple edge detector was first utilized to
detect structural blocks, and then the textural blocks were se-
lected from the remaining blocks. The detected texture blocks
were then passed by the corresponding blocks, and were
pointed by their motion vectors in the reference frame.

All these methods"™™ just take statistical characteristics of
color or edge information into account and ignore the HVS
when performing image segmentation. It is very desirable to
segment texture regions by exploiting HVS limitations and
image contents. As for texture synthesis, both methods in
Ref. [3] and Ref. [4] are not robust enough to achieve good
performance for various texture regions. The synthesis algo-
rithm in Ref. [ 5] just calculated one block from its reference
frame.

To tackle the problems mentioned above and fully employ
the perceptual redundancy, this paper proposes a perceptual
image segmentation algorithm and then synthesizes the seg-
mented regions by an auto-regressive ( AR) model, which is
very robust for various kinds of texture regions.

In this paper, we classify input sequences into texture
frames and non-texture frames. I-frames and P-frames are
defined as non-texture frames, which are encoded by tradi-
tional methods. B-frames are defined as texture frames, in
which the proposed image segmentation and texture synthe-
sis are performed. The perceptual image segmentation main-
ly employs the just-noticeable-distortion (JND) to detect
and segment the texture regions. It is pointed out that hu-
man eyes cannot sense any changes below the JND threshold
" In this paper, the JND is used to guide the segmentation
process of texture regions.

In the proposed AR texture synthesis algorithm, each pix-
el is synthesized by a linear combination of pixels in the
temporal neighborhoods in its adjacent frames. AR has
shown remarkable progress and has been adopted for differ-
ent applications, such as image compression and video pro-
cessing. In Ref. [7], Wu et al. presented a piecewise 2D
AR for predictive image coding, and in Ref. [8], Tugnait
proposed a texture synthesis using the asymmetric 2-D non-
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causal AR model.
1 Texture Region Segmentation
1.1 Spatial JND model

The perceptual redundancy in the spatial domain is mainly
based on the sensitivity of the HVS due to luminance con-
trast and the spatial masking effect’””. Various computa-
tional JND models have been developed. In Refs. [9 —10],
the JND models were built in the spatial ( pixel) domain.
To incorporate the CSF into the JND model, some other
models were proposed in sub-band, DCT, and wavelet
domains "' . In this paper, we use the spatial JIND model
proposed in Ref. [9]. Chou and Li"” found that the spatial
JND threshold can be modeled as a function of luminance
contrast and spatial masking,

SIND(x, y) =max{f(bg(x,y), mg(x,y)),f,(bg(x, y)) }
(D

where f,(bg(x, y), mg(x, y)) and f,(bg(x, y)) are functions
to estimate the spatial masking and luminance contrast, re-
spectively. The quantity f,(bg(x, y), mg(x, y)) is defined as

fi(bg(x, y),mg(x,y)) =

mg(x, y) X a(bg(x, y)) +B(bg(x,y)) (2)

where mg(x, y) is the maximum weighted average of lumi-
nance differences derived by calculating the weighted aver-
age of luminance changes around position (x, y) in four di-
rections.

mg(x,y) = max {|grad(xy) |} (3)

where

grad (x,y) == > p(x =3 +i,y =3 +)G(i, ) (4)

1
16 = &=

J

The operators G, are defined in Fig. 1. The quantities
a(bg(x,y)) and B(bg(x, y)) in Eq. (2) depend on the
background luminance and specify the linear relationship be-
tween the visibility threshold and the luminance difference
(or luminance contrast around the point of coordinate (x,

y)); hence, they model the spatial masking'”'. These
quantities are expressed as
a(bg(x, y)) =bg(x,y) x0.0001 +0. 115} (3)
B(bg(x, y)) =u - bg(x, y) x0.01
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Fig.1 Definition of G,. (a) G,;(b) G,;(c) G;:(d) G,

In Eq. (5), u is the slope of the function at a higher
background luminance level. bg(x, y) is the average back-
ground luminance calculated by a weighted low-pass filter B
(see Fig.2).
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Fig.2 Matrix B for weighted low-pass filtering

The function f,(bg(x, y) ) computes the visibility threshold
from the luminance contrast as

£ (bg(x, ) =

{To(l —(Li;”) )+e
y(bg(x, y) —127)

bg(x, y) <127

bg(x, y) >127
(7)

where T, is the visibility threshold when the background lu-
minance level is 0 and & denotes the minimum visibility
threshold. v is the visibility threshold when the background
luminance level reaches the maximum. This function shows
that the visibility threshold has a square root relationship
with low background luminance and a linear relationship
with higher background luminance.

1.2 Temporal JND model

In addition to the spatial masking effect, the temporal
masking effect should also be considered to build the spatial-
temporal JND (STIND) model for video signals. A greater
inter-frame luminance difference usually results in a greater
temporal masking effect. Based on Ref. [16], the temporal
JND is defined as

TIND(x, y, 1) =
max(T, Eexp( —(&( A(x, y, 1) +255)) +T)
2 21
A(x, y, ) <0 (8)
maX(T, Lexp( S0 15 55— Ak y, z))) +7)
2 27
A(x, y, 1) >0

where H and L are model parameters. The value 7 =0. 8 is
based on the conclusion in Ref. [ 16] stating that the scale
factor should be reduced to 0. 8 when A(x, y, t) <5, in or-
der to minimize the allowable distortion in stationary re-
gions. The quantity A(x, y, ) denotes the average luminance
difference between frame ¢ and the previous frame ¢ —1.

A(x, ¥, t) :p(x! Y t) _g(x) Y I - 1) +

bg(x’ Y, t) _bg(x: »t- 1)
2

1.3 STJND-based segmentation algorithm

(9)

Our STIND is then defined as
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STIND(x, y, £) = SIND(x, y) TIND(x, y, 1) (10)

The STIND model exploits the HVS visual sensitivity to
luminance contrast, as well as the spatial and temporal
masking effects. The STIND model provides the visibility
threshold of each pixel of an image by assuming that the
pixel is perceived at the highest visual acuity.

Since an accurate segmentation is of great importance for
the subsequent synthesis process, we adopt the STIND pro-
file to detect and segment the texture regions from each tex-
ture frame. Compared with other JND models, the STIND
takes full consideration of the luminance adaptation, texture
masking and their overlapping effects.

We apply the following principle to detect texture regions
in this paper. If one pixel has a relatively greater JND value,
it is of less importance to human viewers, and, consequent-
ly, it can be classified as a candidate pixel within texture re-
gions. In order to be compatible with the existing video cod-
ing frameworks'"™, the texture region segmentation is per-
formed in the unit of a macro-block (MB). The JND energy
of one MB is defined as

15 15
JNDMB=25L6; Z; IND(i, j) (11)
where JND(, j) represents the JND value located at (x, y). If
one MB has a JND energy higher than a given threshold, it is
defined to be a candidate texture MB; otherwise, it is a non-
texture MB. The threshold of the JND energy is defined as
the average of all the MBs’ JND energy in a texture frame,

1
= D
total MB z INDy

MB

JNDthreshold ( ]2)

One segmentation result by the aforementioned method is
depicted in Fig. 3(b), from which we can observe several
isolated MBs in the detected texture regions. To remove the
isolated MBs, an iterative row and column scanning algo-
rithm is devised. We first scan the texture MBs row by

row, and then scan the texture MBs column by column.
The row scanner removes horizontally isolated MBs, which
have no adjacent texture MBs in the same row. And then
the column scanner removes the vertically isolated texture
MBs in the same way. The row scanner and column scanner
are repeated until there are no isolated texture MBs in the
detected texture regions. The result is shown in Fig.3(c),
where isolated MBs are removed. To achieve better segmen-
tation results, only the largest connected texture region is se-
lected, while others are ignored. The final detected texture
region is depicted in Fig.3(d).

2 AR-Based Texture Synthesizer

In the proposed AR-based synthesizer, each pixel in the
texture region is generated as a linear combination of pixels
taken from the closest forward and backward reference
frames. In our scheme, the synthesized pixel p,(m, n) is in-
terpolated as

L-1 L-

p,(m,n) = P (m, n)W.(k ) +

=~
ol

z ZPAHI(’;[’ ’;)Wb(u; V)

=0

(13)

=
I
o

with m=m—-L/2 +k+V,, Ai=n—-L/2+1+V,, m=m-
L2 +u+V,_, and n=n-L/2+v+ V., Here V  and
V, crepresent the forward motion vectors in the horizontal
and vertical directions; V,_, and V , represent the backward

motion vectors in the horizontal and vertical directions;

p._,(m,n) and p,. (m, n) represent the corresponding re-
constructed pixels along the motion trajectory in the forward
and backward reference frames; W.(k, ) and W, (u,v) re-
present AR parameters pointing to the forward and backward
reference frames; L represents the window size of the AR
model. An example of the AR model with L =3 is illustrated
in Fig.4.

Fig.3 Original picture and JND segmentation results at dif-
ferent stages. (a) Original picture; (b) JND selected result with iso-
lated MBs; (¢) Row and column scanner result without isolated MBs;
(d) Final detected region

Fig.4 Example of the AR model with L =3

In contrast to the non-texture MBs, the texture ones have
no motion information in the encoder or the decoder. For a
better perceptual result, the direct mode is employed to find
corresponding forward and backward blocks for the texture
block in the current texture frame. When the co-located MB
is intra mode, the direct mode is simply replaced by the spa-
tial direct mode.

AR parameters W, (k, [)and W, (u, v)are computed by mini-
mizing the sum of square error e between the original pixel val-
ues and the synthesized pixel values in the texture region.

e= 3

(m, n) e texture _region

(p(m,n) =p,(mn)”  (14)
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where p,(m, n) represents the original pixel value located at
(m, n). Substituting (13) into (14), we obtain

L-1 L-1

e= Y | > po (D Wk D)+

(m, n) e texture_region k=0 [=i
L-1 L-l 2

3 3 P m Wy, v) =p (m, ) | (15)

According to the least-squares method, AR parameters

can be derived by setting

ge -0 ge _
aW.(k,D) ~ 7 oW, (u,v)

0 (16)

In this paper, each texture frame has unique AR parame-
ters, which are written into the bit-stream and sent to the
decoder. At the decoder side, AR parameters are decoded
and the same synthesis is performed.

3 Experimental Results and Analysis

The proposed segmentation and synthesis methods are in-
tegrated into the H. 264/AVC reference software JMI10. 1.
Our experiments are conducted with the GOP structure
(e.g., IBBBP) and rate distortion optimization is enabled.
The quantization parameters QP are set to 30, 32, 34 and
36, respectively. To validate the performance of the pro-
posed method, three standard sequences ( mobile, coast-
guard and flower garden), which are full of rigid textures,
non-rigid textures, and detailed textures, are tested.

Tab. 1 shows the bit-rate savings on sequences under dif-
ferent QPs. For sequence mobile, bit-rate savings ranging
from 15.55% to 19. 86% are achieved, and for coastguard,
the bit-rate savings range from 17. 58% to 23. 18% . While
higher bit-rate savings of more than 50% are achieved for
the sequence flower garden, in which nearly half of the re-
gions are segmented as texture regions.

Tab.1 Bit-rate savings on sequences under different QPs %

Video Average bits saving
sequence QP =30 QP =32 QP =34 QP =36
Mobile 15.55 16. 49 17.58 19. 86
Coastguard 17.58 20. 99 21.89 23.18
Flower garden 55.00 55.89 57. 11 58.42

Fig. 5 shows the 19th reconstructed frames in flower gar-
den by the proposed methods and the anchor reference of
JMI10. 1. The bits spending on Fig.5(a) and Fig. 5(b) are
37 664 bits and 18 448 bits, respectively. And the peak sig-
nal noise ratios ( PSNR) of these two pictures compared
with the original one are 36. 76 dB and 31. 35 dB, respec-
tively. However, it is very difficult to distinguish Fig. 5(a)
and Fig.5(b) in terms of visual quality. That is because hu-
man viewers pay less attention to the detected regions ( flow-
er regions) in these two pictures. Consequently, the synthe-
sized texture region in Fig. 5(b), which exhibits similar se-
mantics rather than pixel-by-pixel fidelity as in Fig. 5(a),
achieves satisfactory results.

Fig. 6 depicts the bit rates spending on texture frames with-
in the sequences mobile and coastguard by the proposed
method and the anchor reference of JMI10. 1. It can be easily
observed that the proposed method can effectively reduce the
bit rates while maintaining the same perceptual quality.

(b),.

Fig.5 The 19th reconstructed texture frame of flower gar-
den. (a) JMI10. 1; (b) Proposed method
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Fig. 6 Bit-rate spending on texture frames by different meth-
ods. (a) Mobile; (b) Coastguard

4 Conclusion

Considering the texture regions in most video scenes, a
perceptual segmentation algorithm and an AR-based synthe-
sis method are proposed in this paper. The proposed meth-
ods are integrated into the H. 264/AVC reference codec
JM10. 1. The texture frame is first divided into texture re-
gions and non-texture regions by the JND-based segmenta-
tion, and then an AR-based synthesizer is performed on the
texture regions. Experimental results verify that the pro-
posed methods can effectively reduce the bit rates while
maintaining good perceptual quality.
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