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Abstract: In order to reduce the pilot number and improve
spectral efficiency, recently emerged compressive sensing (CS)
is applied to the digital broadcast channel estimation. According
to the six channel profiles of the European Telecommunication
Standards Institute ( ETSI) digital radio mondiale ( DRM)
standard, the subspace pursuit ( SP) algorithm is employed for
delay spread and attenuation estimation of each path in the case
where the channel profile is identified and the multipath number
is known. The stop condition for SP is that the sparsity of the
estimation equals the multipath number. For the case where the
multipath number is unknown, the orthogonal matching pursuit
(OMP) algorithm is employed for channel estimation, while the
stop condition is that the estimation achieves the noise variance.
Simulation results show that with the same number of pilots, CS
algorithms outperform the traditional cubic-spline-interpolation-
based least squares ( LS) channel estimation. SP is also
demonstrated to be better than OMP when the multipath number
is known as a priori.
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ompressive sensing (CS) has recently emerged as a col-
lection of principles and methodologies which enables
efficient reconstruction of sparse signals from relatively few
linear measurements'' . We roughly divide CS algorithms
into two classes: greedy algorithms and convex optimization
algorithms. Greedy algorithms make a sequential locally opti-
mal choice in an effort to determine a globally optimal solu-
tion. They are matching pursuit (MP)"™', orthogonal matc-
hing pursuit (OMP)™, subspace pursuit (SP)"' and many
other variants'® ™. Compared with convex optimization algo-
rithms, they have a much lower complexity, which indicates
that they are more appropriate for practical applications.
Recently, MP has been applied for pilot assisted channel
estimation in orthogonal frequency division multiplexing
(OFDM) systems” . It is demonstrated that the pilot
number can be substantially reduced compared with the tra-
ditional interpolation based least squares (LS) method while
the performance is similar. Especially for time-vary-ing
channels where channel estimations should be frequently car-
ried out, CS algorithms can save a large number of pilots
and thus improve the spectral efficiency. It is also beneficial
for the multi-input multi-output (MIMO) system to employ
CS algorithms since the pilots increase linearly with the
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number of transmit antennas.

Although MP can find an approximated solution from the
overcomplete dictionary with asymptotic convergence, the
shortcoming lies in the fact that it may select the same col-
umn several times and thus pull down the efficiency. It is
necessary to adopt more powerful CS algorithms for differ-
ent occasions.

In this paper, we apply CS algorithms as OMP and SP for
digital broadcast channel estimation. According to the ETSI
digital radio mondiale (DRM) standard, six channel profiles
are classified. For the case where the multipath number is
unknown, we apply the OMP algorithm for channel estima-
tion. For the case where the channel profile is identified and
the multipath number is known, we apply the SP algorithm
for delay spread and attenuation estimation of each path. In
both cases, we formulate pilot assisted OFDM frequency do-
main channel estimation as a sparse recovery problem. We
also compare their performance with the traditional interpo-
lation-based LS method using different numbers of pilots.

1 Problem Formulation

We model channel impulse response ( CIR) of multipath
propagation as

h(r, 1) = Za,,(z)a(r —r(D) )

where S, «, and 7, are the multipath number, amplitude at-
tenuation and delay spread for path p. According to the ET-
SI DRM standard"", we have six channel profiles as listed
in Tab. 1. Channel 1 is the pure AWGN channel, which is
not common in practice. Channels 2, 4 and 5 are two-path
channels with increased delay spreads. Both channels 3 and
6 are four-path channels where eight parameters should be
estimated.

With block fading channel assumptions where the channel
parameters are constant over each block and supposing per-
fect symbol synchronization, we model the equivalent dis-
crete CIR as

h(m) = Za,,a((m -1)T,) (2)

where T is the sampling interval of the receiver. We notice
that the elementary time period T of the OFDM symbol in
the DRM standard is no more than 0. 1 ms, so T, should be
less than 0. 05 ms, which is very small compared with the
maximum delay spread and results in a channel with rela-
tively few nonzero taps.

Supposing the number of channel taps to be L and S of
them nonzero, we define it as an S-sparse channel. Consid-
ering an OFDM system, there are totally N subcarriers,
among which M subcarriers are selected as pilots, with posi-

tions represented by Q,, Q,, ..., 0,(1<0,<0,<...<Q,
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<N). We denote the transmitted pilots and the received pi-

lots as X(Q,), X(Q,), ..., X(Q,,) and Y(Q,), Y(Q,),
.., Y(0Q,,, respectively. We have

y=Ah+n (3)

where y =[Y(Q,), Y(Q,), ..., Y(Q)1", h=[h(1),

h(2), ..., k(D)]", p=[n(1),n(2),....,n(M)]". Each
component of vector » is a dependent complex Gaussian
variable. 5 ~CN(0, ¢l,,). I,,is an M x M identity matrix.

A=ZF 4)

where F is a submatrix selected by row index [Q,, Q,, ...,
0,1 and column index [1, 2, ..., L]. Z =diag{X(Q,),
X(09,), ..., X(Q,,)} is a diagonal square matrix with each
component to be a pilot symbol.

Tab.1 Six channel profiles in ETSI DRM standard

Channel Path 1 Path 2 Path 3 Path 4
number a T/Ms o« T,/Ms a3 T3/mMS o T4/MS
1 1 0 0 0 0 0 0 0
2 1 0 0.5 1 0 0 0 0
3 1 0 0.7 0.7 0.5 15 025 22
4 1 0 1 2 0 0 0 0
5 1 0 1 4 0 0 0 0
6 0.5 0 1 2 0.25 4 0.0625 6

If the rows of A are more than its columns, Eq. (3) can
be solved by the traditional LS method. However, we are
more interested in the under-determined case where the rows
of A are fewer than its columns, which means that the pilots
are less than unknown channel coefficients. Still we can use

HO) =yh 1200000y ()
first to figure out the channel transfer function (CTF) at pi-
lot subcarriers and then make interpolations as linear or cu-
bic spline interpolations for data subcarriers. Obviously,
this method will yield large deviations because it does not
use sparse conditions as a priori.

Here we focus on low-complexity greedy CS algorithms
and divide the sparse channel estimation problem into two
cases. In the first case, the multipath number is unknown,
we apply the OMP algorithm for channel estimation. For the
case where the channel profile is identified and the multipath
number is known, we apply the SP algorithm for delay
spread and the attenuation estimation of each path.

2 MP and OMP Algorithm

MP is a sort of algorithm that constructs a sparse solution
by iteratively selecting dictionary elements best correlated
with the residual part of the signal™. If the dictionary is a
matrix, the objective of the construction is to find a linear
combination of matrix columns which is the closest to the
signal. At each step, one column that best correlates with the
current residue is added to the current selection. Then, it up-
dates the residue by projecting it onto the new selection.
Here we briefly describe the MP and the OMP algorithms
based on Eq. (3).

First, we generate a dictionary matrix D from A,

A=D.C (6)

where D e R"*" has the same dimension as A and each col-
umn of D is a unit vector. C is a diagonal matrix with each
diagonal component corresponding to the normalized coeffi-
cient for each column of A.

Let d, denote the i-th column of D and R, denote the resi-
due at the k-th step. The selected column index at the k-th
step is

l, = arg max | (d, R,) | 0

where | {d,, R,) | represents the absolute value of inner
product between d, and R, .

Now starting MP with an initial residue R, =y, the algo-
rithm evolves by

Rk=<dw Rk>d1k+Rk+l (8)

and replaces R, with R, ,,. Since R,,, is orthogonal to d, ,
we have

IR = [{d RO [*+ IR, I3 9

With the increase of k(k=1,2,...), we minimize |R,,, |,
till it satisfies the stop condition

| R, Il .<0o

(10)

Supposing that the iteration ends in K steps, the solution is

d=Y(d,. R)d, (11)

which is a linear combination of previous selected columns.
Finally, the estimation of h is
K
hy, =C'd=C"Y (d,.R)d, (12)
i=1
Although MP can rapidly find an approximation from an
overcomplete dictionary with asymptotic convergence, the
shortcoming lies in the fact that it may select the same col-
umns several times and thus pull down the efficiency. There-
fore, OMP is proposed with revision by using the residue’s
orthogonal component for the next iteration'*. Only the com-
ponent that is orthogonal with the space spanned by the previ-
ous selected columns is preserved. In most literature, the set
containing previous selected columns is called the active set.
Here we denote the active set and its complementary set as
I and I°, respectively. TUI° ={1,2, ..., L}. Unlike MP al-
ways selecting candidate column from {1,2, ..., L} as in Eq.
(7), OMP selects it only from I°, where the selected column
index is
I, =arg max | (d,.R,) | (13)
Then Gram-Schmidt orthogonalization is implemented to re-
move the component within the space spanned by /.

(14)

u.=a, -

where {u,} is an iteratively generated set that can be regar-
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ded as the bases of the space spanned by I. We initialize u,
to be d, and iteratively update the residue by

(R, u,)
k= - kzuk+ k+1 (15)
| u, |l
In this way, OMP adds different columns into the active set
until the stop condition (10) is satisfied. Supposing it ends
in K steps (usually K<<L), the solution is

- (R.u)

=y ety

~u,
o llw

(16)

Eventually, the estimation of k is
(17)

Compared with MP, OMP converges much faster. Even
for a large dictionary matrix, the step is countable. It has
already been demonstrated in Refs. [12 — 13] that in some
circumstances, OMP does succeed in finding the sparsest so-
lution.

But the discussion is going on. OMP works in a greedy
way, which determines that the final solution is essentially
suboptimal, not globally optimal. Besides, OMP always
adds a new column to the active set, but never removes out-
dated columns from the active set. When a selection error
occurs, the iteration will continue till reaching the end with-
out correcting them adaptively. Although several revised
versions of OMP have been proposed against these disadvan-
tages'®™, OMP is still one of the best candidates for practi-
cal applications due to its reasonable tradeoff between per-
formance and complexity.

3 SP Algorithm

In the SP algorithm, S columns selection is iteratively re-
fined from A until the stop condition is satisfied. Al-
though it is still developed based on the greedy rule, SP al-
lows new columns to enter as well as to leave the active set.
S columns are simultaneously selected rather than only one
column in MP and OMP. In this way, the subspace spanned
by S columns is tracked down.

The SP algorithm solves the problem of Eq. (3) and
works as follows. First, it begins with the same step as Eq.
(6) to normalize each column of A. Then, it finds S col-
umns from D on which y has the S largest projections, and
stores their indices into a set . Meanwhile, the residue R, is
also obtained. The projection of y onto each column vector
is defined as the absolute value of their inner product which
is similar to Eq. (7).

Here we introduce the definition of the residue since it is
different from MP and OMP.

Definition 1 If D"D is invertible, the residue of y on
matrix D is defined as

R=y-DD'y (13)

where

D' =(D"D) 'D" (19)

denotes the pseudo inverse of D. We simply write it as R =
resid(y, D).

Algorithm 1 Subspace pursuit algorithm

Input: A, y,S;

Initialization: Normalize each column of matrix A with a
coefficient diagonal matrix C so that A =DC;

I ={S indices corresponding to S columns of D on which
y has the largest projections};

R, =resid(y, D;);

Iteration: k=1,2, ...

If R, =0, quit the iteration; otherwise continue;
I' =1U {S indices corresponding to S columns of D on
which R, has the largest projections};

Get D/, and figure out x =D y;

I, = {S indices corresponding to S components with the
largest absolute value in x};

R, =resid(y,D,);

If |R,,, |l,> R, ]|, quit the iteration;

Otherwise, let [ =1 .» increase k by one and continue the
iteration;

Output: One estimated vector X is yielded with a nonzero
element indexed by 1 satisfying £, = D] y;

The final result is flgp =C'%.

For the last step of initialization, we obtain a submatrix D;
from D by index set I and then figure out the residue R, =
resid(y, D;). During the iterations, another S indices corre-
sponding to S columns of D on which R, has the largest pro-
jections are selected and added to the previous S columns set,
forming I'. The number of columns in ' may be less than 2.5
since it is possible to have overlap between two selections.
Then, we figure out D} and a vector x = D}, y, from which
we choose S indices corresponding to S components with the
largest absolute value. The active set /, at step k is acquired
and a new residue R, , =resid(y,D,) is also yielded. If

IR o> 1R (20)

the iteration is terminated as it means that the residue cannot
be smaller. Otherwise, we replace T with I ,» increase k by
one and continue the iteration. It is noticed that at the start
of each iteration, current residue R, is checked whether it is
zero. If so, we also terminate the iteration.

Finally, one estimated vector ¥ is obtained. The nonzero
locations of £ are indexed by I and satisfy £, = D] y. The
output is

A

h,=C'%

sp

which is the estimated CIR for Eq. (3).

(2D

4 Simulation Results

In our simulations, we set OFDM parameters according to
robustness mode B in the DRM standard as shown in Tab.
2. The channel profile is set to be channel 3 as described in
Tab. 1. We define the mean square error (MSE) as

lh-h];

MSE{h)} = TTE

(22)

where £ is the estimate of h.
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In the first case, we suppose that the multipath number
and the channel profile are unknown to the receiver, and we
compare MSE performance for the OMP algorithm and the
LS method.

The equal-spaced pilot placement and the random pilot
placement are employed for LS and OMP, respectively. In
Fig.1, OMP with M =12 is even better than cubic-spline-
interpolation-based LS with M =69 for SNR >20 dB, while
their spectral efficiency is 94% and 66% , respectively.

Tab.2 System parameters

Parameters Value

FFT length Npgr 256

Used subcarriers N 206

Guard interval N, 64
OFDM symbol period 7,/ms 26.7
OFDM sample period 7/ s 83.3

Number of pilots M 12

Number of channel multipaths S 4

CIR length L 30
Modulation QPSK

10'

—e— OMP with M =12
—>— OMP with M =35
—8— OMP with M =69
—+— LS cubic spline with M =35
—o— LS cubic spline with M =69

0 5 10 15 20 25 30 35
SNR/dB

Fig.1 MSE comparisons for OMP and LS

In the second case, we suppose that the multipath number
is known as a priori to the receiver where we apply OMP and
SP to delay spread and attenuation estimation of each path.

1 1
0 —p— OMP with M =10
—e— OMP with M =12
o —&— SP with M =10
10 S —+— SP with M =12
]0—1 -
=
=
10721
10-3 1
10 -4 1 1 1 1

1 1 3
0 5 10 15 20 25 30 35
SNR/dB

Fig.2 MSE comparisons for OMP and SP

As shown in Fig.2, when M =10, SP is clearly superior to
OMP. When M =12, SP is still a little better than OMP.
The reason is that, at each iterative step OMP always greedi-
ly selects one column vector, while SP selects several col-
umns in batch. The possibility to correctly find one column
with one selection is much lower than that with batch selec-
tion. Besides, once OMP selects one column into the active
set, it never removes it, which means that if one error selec-
tion occurs, it will never be corrected in the later steps.

5 Conclusion

In this paper, we formulate the OFDM channel estimation
as a sparse recovery problem according to the DRM stand-
ard. It is shown that CS algorithms are much better than the
traditional cubic-spline-interpolation-based LS method. In
the case where the multipath number is known, SP outper-
forms OMP.
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