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Abstract: In order to enhance the accuracy and reliability of
wireless location under non-line-of-sight (NLOS) environments,
a novel neural network (NN) location approach using the digital
broadcasting signals is presented. By the learning ability of the
NN and the closely approximate unknown function to any degree
of desired accuracy, the input-output mapping relationship
between coordinates and the measurement data of time of arrival
(TOA) and time difference of arrival (TDOA) is established. A
real-time learning algorithm based on the extended Kalman filter
(EKF) is used to train the multilayer perceptron (MLP) network
by treating the linkweights of a network as the states of the
nonlinear dynamic system. Since the EKF-based learning
algorithm approximately gives the minimum variance estimate of
the linkweights, the convergence is improved in comparison with
the backwards error propagation ( BP) algorithm. Numerical
results illustrate that the proposed algorithm can achieve enhanced
accuracy, and the performance of the algorithm is better than that
of the BP-based NN algorithm and the least squares ( LS)
algorithm in the NLOS environments. Moreover, this location
method does not depend on a particular distribution of the NLOS
error and does not need line-of-sight ( LOS) or NLOS
identification.

Key words: digital broadcasting signals; neural network;
extended Kalman filter ( EKF); backwards error propagation
algorithm; multilayer perceptron

ireless location technologies, which are designated to
‘ V estimate the position of a mobile station( MS), have
drawn much attention for various potential location-based
services''”. Besides the satellite navigation systems, new
alternative position location systems were proposed based on
other wireless communication systems, such as cellular net-
works and wireless local area networks ( WLAN)"™ . An
order issued by the U. S. Federal Communications Commis-
sion (FCC) in July, 1996 requires that all the wireless serv-
ice providers, including cellular and broadband wireless,
provide location information to emergency 911 ( E911)
public safety services. These FCC requirements have also
boosted research in wireless location techniques.
Recently, digital broadcasting, such as digital video
broadcasting (DVB), digital audio broadcasting ( DAB),
and the ATSC digital television (DTV), has been widely
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used as a novel information transmission technique. The po-
sitioning system using television synchronization signals was
first proposed in Ref. [5]. The major advantage of the tele-
vision positioning approach is from the low RF frequency,
the wide band, the high transmission power and the broad
coverage of DTV transmitters. Based on LOS assumptions
between the transmitter and the receiver, the research in
Ref. [5] showed that the location accuracy can reach meter-
scale with the ATSC DTV signals. However, in urban or
indoor environments location estimates are often contamina-
ted by interference due to NLOS propagation. Therefore,
the received signal parameter is a very complex function of
the distance, the geometry, and the materials. The com-
plexity of the inverse problem (i.e., to derive the position
from the signals) and the lack of complete information in
different environments motivate us to consider flexible mod-
els based on machine learning. The machine learning meth-
od avoids the complexity of determining a proper propaga-
tion model by traditional geometric or statistical approaches
and also avoids the inference problem to derive locations
from models. Several geo-location algorithms based on neu-
ral networks were presented in Refs. [6 — 7], which em-
ployed NNs as universal approximators in the sense that they
can approximate any input-output mapping to any desired
degree of approximation given a sufficient number of hidden
units. However, the efficiency of NN depends on the net-
work structure and the training algorithm. The conventional
backward propagation ( BP) algorithm is a first-order steep-
est descent ( SD) method; it iteratively adjusts the link-
weights to minimize the differences between the outputs of
the NN and the desired outputs. However, the convergence
speed is slow and may not be effective for predicting nonsta-
tionary processes '*'. Another learning algorithm for the so-
Iution of a nonlinear optimization problem is the Newton’s
method. In comparison with the BP method, this algorithm
converges in fewer iterations; however, it suffers from ex-
cessive computational requirements for each pattern and is
not suitable for large problems.

In this paper, the extended Kalman filter (EKF) is used
to train the MLP network by treating the weights of a net-
work as the states of a nonlinear dynamic system. Since the
EKF is a second-order learning algorithm, fast convergence
is expected. Furthermore, because no tuning parameters that
crucially govern the convergence properties are needed; it is
easier to use.

1 Measurement Model

For simplification, we consider the location in a two-di-
mensional (2-D) plane. The extension to a three-dimension-
al (3-D) space can also be done with the same steps de-
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scribed as below. The TOA method measures the range be-
tween each base station (BS) and the MS to be located.
Consider an MS located nearby M BSs. For measurements
at the MS from the i-th BS, the range equation can be ex-

pressed as
TOA, Al =u,+b, +n, i=1,2,....M @))

where

ui=«/(xs—xi)2+(y>—yl.)2 i=1,2,...M (2)

is the true range between each BS and the MS; X =(x, y) is
the MS position to be estimated; b, represents the NLOS bi-
as, and n, is the measurement noise which is a zero-mean
random process with standard deviation ;. (x,, y,) is the
true MS location and (x,, y;) is the i-th BS location. Since
the NLOS causes the signal to arrive from a path that is lon-
ger than the true distance, then b,=0. If the measured ran-
ges including NLOS bias are represented as [,, the expected
LOS measure ranges denoted as r; can be written in terms of
the measured ranges as

ri:ui+ni i:1,2,...,M (3)

A TDOA measurement can also be separated into the true
value, the NLOS error, and the receiver noise parts, as in
the following equation:

TDOA, , = TOA, - TOA, =
(u,~u) + (b, —b) +(n,-n)s P
TDOA!, +b;, +n;,

where TDOA? . 1s the true distance difference; b? . represents
the NLOS bias; and n , is the measurement noise which is a
zero-mean random process with standard deviation o ,.

2 EKF Algorithm for NN Training
2.1 Multilayer perceptron

An MLP consists of several layers of nodes which express
artificial neural units. Each node connected by the links
with all the nodes in the adjacent layer computes a weighted
sum of inputs, and then adds an offset to the sum. The
computed result is the output through a nonlinear function.
The three-layer structure MLP scheme for wireless location
described here is illustrated in Fig. 1. In this paper, the least
number input measurements, i. e., three TOAs and two
TDOAs are employed to estimate MS location, and the net-
work shown has only one hidden layer, which is based on
the fact that the small-size NN would be preferable to re-
quire a shorter time for both training and actual position esti-
mations. The outputs of the MLP are x and y coordinates of
the corresponding position as shown in Fig. 1.

Let the i-th node in the n-th layer be denoted by the node
(n, i);x7(t) is the output of the node (n, i) for pattern ¢,
and x,(f) stands for the i-th element for pattern ¢. The link-
weight from the node (n, j) to the node (n + 1, i) and the
offset of the node (n, i) are expressed as a; ; and 07, re-
spectively.

In our network, each node in the input layer is assumed

Fig.1 Structure of multilayered neural network for wireless
positioning

to perform no operation, that is

x; (f) =x,(1) I<i<N, -1 (5)

Furthermore, the offset is treated as the linkweight by put-
ting

xy (1) =1 I<sn<S§ (6)

1 .
a,, =6;" lsn<sS-1;1<i<N,

n+l

- (7

where N, stands for the total number of nodes in the n-th
layer, and S represents the total number of layers including
the input and output layers. As shown in Fig.2, the opera-
tion of the node (n + 1, i) is then characterized by

(0 = ga;j X0 +o ) = ia:, X1 )
(8)

The function f{ - ) is usually given by the following sigmoid
function:

1
1+e™

flx) = (9)

This is because the derivative of f(x) is easily obtained by

F(x0) =f(x) (1 -f(x)) (10)
x 9 @ xg+1=f( ﬁfa;;x;(z))
ajy

Fig.2 Operations of the node (n +1, i)

2.2 Extended Kalman filtering training algorithm

The conventional BP algorithm iteratively adjusts the link-
weights using the SD technique so that the differences be-
tween the outputs of the MLP and the desired outputs are
minimized. However, the convergence speed is inherently
slow because the learning rate is fixed. Furthermore, we
have to tune the learning rate and the momentum term in a
heuristic manner so that a quick convergence is obtained.
An improper choice of these parameters may cause problems
of unstability or suffer from much slower convergence. The
advent of a more powerful learning algorithm instead of the
SD-based algorithm has been expected. Using the EKF for



396

Ke Wei, Wu Lenan, and Yin Kuixi

updating the weights of an MLP can result in faster conver-
gence in the sense that fewer training iterations are needed.

Since the connection weight vector can be viewed as the
state of a static nonlinear dynamic system, we set the un-
known linkweights as the state vector,

a=[(a)", ()", ... (" )" (11)

where
a'=[(a)", (a)", ... (ay _D']" (12)
a =[d} ,d},, ....da},1" (13)

Let the output vector of the nodes in the n-th layer and the
desired output vector of the MLP be

x'(1) = [x](0), (D), .., Xy (D] (14)

and

d(n) =[d,(D),d, (D), ....d, (D]" (15)

respectively. In Eq. (15), d,(?) is the desired output of the
i-th node in the output layer for pattern t. The MLP is then
expressed by the following nonlinear system equations:

a(t+1) =a(1) (16)

d(1) =h,(a(1) +v(1) =x"(1) +v(1) (17)

where x°(¢) is the output vector of the nodes in the output
layer for pattern ¢. The input to the MLP for pattern ¢ com-
bined with the structure of the MLP is expressed by a non-
linear time-variant function k,. The observation vector is re-
presented by the desired output vector d(¢), and v(?)is as-
sumed to be a white noise vector with covariance matrix
R(t) which is regarded as a modeling error.

Using the standard EKF method "' to solve Eqs. (16) and
(17), we obtain the following real-time learning algorithm:

a(n =act-1) +K(r)[d(r) -#°(1)] (18)

K(t) =P(t-DH()"[HOP(t-DH(H) " +R(H] ™"
(19)

P(t) =P(t-1) -K(H)H(1)P(t-1) (20)

We set P(1) =P(t|t)and @(r) =d(t | 1), since P(t|1) =
P(t+1|Hand @(zr|7) =@(t+111). Also £°(¢) denotes the
estimate of x°(7)based on the observations up to time £ -1,
which is computed by £°(#) = h,(a(t-1)). H(t)is ex-
pressed as

(21)

H(1) =(
a=da(t-1)

As each new pattern is available, using Eqgs. (18) to (21),

we can approximately compute the minimum variance esti-

mate of the linkweights which is asymptotically equivalent

to the least squares estimate.

3 Simulation Results and Performance Analysis

Simulation results are provided in this section to assess
the performance of the proposed algorithm. We assume that

the MS can receive the signals from at least three BSs all the
time and all the clocks of participating BSs and MS are syn-
chronized. Considering the long distance between broadcast-
ing transmitter towers, the coordinates of BSs are set as
(0Om, 0 m), (5000 m, 5000 m) and (10 000 m, O m).
We assume that the variances of all the TOA measurement
noises are the same; i.e., they are modeled as random vari-
ables with zero mean and variance 30 m, whereas the NLOS
measurement noise is also assumed to be a white random
variable but with positive mean my ., = 513 m, and the
standard deviation ¢, = 409 m"”. Since a small-size
MLP is usually required, the number of neurons in the hid-
den layer is fixed as 20 only in our simulation experiments.
The MS is placed in uniform random locations in the cover-
age region of three BSs so that we can choose 2 000 MS po-
sitions. The training phase uses 1 000 MS positions and the
other 1 000 MS positions are used in the test phase to esti-
mate the position error. The NN approach using the BP al-
gorithm for geo-location in Ref. [6] is chosen to compare
our method and the traditional LS algorithm.

Compared with the FCC requirements, i.e., 67% loca-
tion error at 100 m and 95% location error at 300 m, Tab.
1 shows the root square error( RSE) of the three algorithms
in four different cases under this condition. The RSE is de-
fined as

RSE= /[ (x,—x)" +(y, -y (22)

Tab.1 Performance comparison among three algorithms m

L EKF-NN BP-NN LS
Situation
67% 95% 67% 95% 67% 95%
0LOS, 3NLOS 80.05 192.10 155.11 250.90 280.73 447.81
1LOS, 2NLOS 71.95 169.58 128.90 215.69 273.11 427.33
2LOS, INLOS 62.69 133.19 111.67 189.51 253.33 399.81
3LOS, ONLOS 51.21 95.82 58.18 99.23 40.55 71.08

It can be seen from Tab. 1 that the LS algorithm is superi-
or to the NN algorithm under LOS environments, but inferi-
or under NLOS environments. The EKF-based NN method
achieves the least RSE among all the three methods, and the
BP-NN and the LS algorithms cannot meet the FCC require-
ments even if there is only one NLOS BS. Even in the
worst case, i.e., when the three BSs are all in NLOS con-
dition, the proposed method has a performance of 67% er-
ror at 80. 05 m and 95% location error at 192. 10 m, which
is still below the location error mandated by the FCC.

Fig. 3 shows the error cumulative distribution function of
different algorithms, where the three BSs are all in NLOS
condition. Corresponding to Tab. 1, it can be observed from
Fig. 3 that although the BP-NN method improves the accura-
cy of the location estimation compared with the traditional
LS algorithm, it is still inferior to the EKF-NN in the NLOS
situation. Fig. 4 shows the relationship between the RSE er-
ror and the number of training times. It can be seen that the
error of the EKF-based algorithm decreases rapidly to reach
a convergence value of about 80 m using approximately 60
training times, while the BP-based algorithm attains about
200 m after 120 training times. Due to this, a great im-
provement in the accuracy of the location estimation using
the EKF-NN method is obtained.
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Fig.3 The CDF of location error
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Fig.4 Contrast of convergence between EKF and BP algorithm

In the real situation, NLOS errors depend on the propaga-
tion environments and change from time to time. NLOS er-
rors are obtained as the excessive delay multiplied by the
speed of light. In order to illuminate the performance in real
environments, NLOS errors in the second case are assumed
to be exponential distributions according to the COST 259
channel model under urban, bad urban, rural, and suburban
environments'''™*'. COST 259 is a European research initia-
tive in the field of “flexible personalized wireless communi-
cations, ” which is detailed enough to reflect all the relevant
properties of propagation channels and allow rapid imple-
mentation for short simulation times.

Fig. 5 shows the performance on root mean square error
(RMSE) location error of three algorithms under different
environments. We define the RMSE position error shown as

RMSE = Jiz (%, =5)* + (3, =27 (23)

All the RMSE location errors are obtained from the average
of L =1 000 independent runs with the same parameters.
The figure contains four groups of bar plots, and each group
corresponds to one of four environment types. Within a
group, the RMSE values derived from the three algorithms
are represented by the heights of three bars.

On the whole, the performance ranking from the worst to
the best with respect to the environment types are: bad ur-
ban, urban, suburban, and rural. As shown in Fig. 5, the
RMSE values of the proposed algorithm are smaller than the
results of the LS and the BP-NN algorithms in all of the sce-
narios, which convinces us that the proposed method can

adapt well to real environments and gives a good estimation
of the location of the MS. Compared with the BP-based and
the LS-based algorithms, the RMSE of location errors is im-
proved approximately from 200 to 350 m in an urban envi-
ronment, and in a bad urban environment, the improvement
even goes up to about 300 to 500 m. For a suburban envi-
ronment, the improvement is around 50 to 150 m; as for a
rural environment, in which NLOS errors are not severe and
do not leave much space for improvement, the performance
improvement of the RMSE value is not very visible.

700
EmE LS algorithm
600 |- 3 BP-NN method
EKF-NN method
500
£ 400 -
~N
=
=
= 300
200 -
100
Al

Suburb

Urban ‘

Bad urba

Fig.5 RMSE location error of three algorithms under different
environments

4 Conclusion

The characteristics of higher power levels, wider band-
widths, and lower frequencies in the digital broadcasting po-
sitioning system make it possible to operate very well in dif-
ferent environments. This paper proposes an efficient and
practical neural network method that performs nonlinear
mapping between the measured TOAs and TDOAs from
nearby BSs and the MS location. The EKF is well known as
a state estimation method for a nonlinear system and can be
used as a parameter estimation method by augmenting the
state with unknown parameters. A multilayered NN is a
nonlinear system having a layered structure, and its learning
algorithm is regarded as parameter estimation for such a
nonlinear system. Analytical results of accuracy show that
the EKF-based scheme has the advantages of robustness and
being easy for training and on-line implementation. Simula-
tion results demonstrate that the proposed algorithm provides
a better accuracy location than the other two methods.
Moreover, it does not require any statistical distribution
knowledge of the NLOS error or LOS/NLOS identification.
The results encourage further investigation into the impact of
the number of input variables, hidden neurons, and the
types of activation functions used.
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