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Abstract: In order to find the completeness threshold which
offers a practical method of making bounded model checking
complete, the over-approximation for the complete threshold is
presented. First, a linear logic of knowledge is introduced into
the past tense operator, and then a new temporal epistemic logic
LTL} is obtained, so that LTL) can naturally and precisely
describe the system’s reliability. Secondly, a set of prior
algorithms are designed to calculate the maximal reachable depth
and the length of the longest of loop free paths in the structure
based on the graph structure theory. Finally, some theorems are
proposed to show how to approximate the complete threshold
with the diameter and recurrence diameter. The proposed work
resolves the completeness threshold problem so that the
completeness of bounded model checking can be guaranteed.
Key words: bounded model checking; temporal logics of
knowledge; multi-agent system

he automatic formal verification of reactive systems

model checking'" is a popular technique which pre-
dominantly focuses on system specification expressed in
temporal logic-linear temporal logic in the case of SPIN'*™!
and FORSPEC' and branching temporal logic in the case of
SMV"™ and its relatives. In 1991, Halpern et al.'” pro-
posed the use of model checking as an alternative to the de-
duction for logics of knowledge. Since then many research-
ers have focused on the model checking problem of multi-
agent systems (MAS)!"™ . In the model checking of the
MAS, properties are expressed with temporal logics of
knowledge, and interpreted systems are used to describe be-
haviors of the MAS. The state explosion problem is still the
main problem in the model checking of the MAS.

Recently, the bounded model checking based on SAT has
been introduced as a complementary technique to BDD-
based symbolic model checking'”. Since bounded model
checking was introduced, much attention has been paid to
the bounded model checking technique for temporal logics
of knowledge'” . Some researchers proposed many new
temporal logics of knowledge such as CTLK, TECTLK,
CTL" K. In Ref. [9], authors proposed a temporal logic of
knowledge CTLK which combines CTL'"' with knowledge
modalities. And they presented that the framework of
bounded model checking for ACTL"" can be extended to
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the verification of ACTLK. Wozna et al. """ proposed a new
logic called TECTLK, which makes us reason about real
time and knowledge in MAS. And they presented a bounded
model checking method for TECTLK. Luo et al. """ extend-
ed the temporal logic CTL " by incorporating epistemic mo-
dalities and obtained the so-called temporal epistemic logic
CTL " K. It is shown that bounded model checking based on
SAT is still applicable for the universal fragment of
CTL" K. Their work is mainly based on the combination of
Ref. [15] and Ref. [9]. However, all the above researches
did not discuss the complete threshold for bounded model
checking of the MAS which is very important for bounded
model checking. And their defined temporal logic of knowl-
edge did not include past time which makes us describe
many properties very compactly. Their researches show that
bounded model checking based on SAT can overcome the
state explosion problem efficiently in the model checking of
the MAS.

In the bounded model checking of temporal logics of
knowledge, in order to make the checking practical, we
must find the number k( called the completeness threshold)
given a finite system M and a property ¢. If there is no
counterexample to ¢ in M of length k or less, then M satis-
fies ¢. However, up to now, to the best of our knowledge,
there is no work about the completeness threshold. There-
fore, in this paper, our main aim is to find the completeness
threshold. Specifically, three contributions are made:

1) We propose a new temporal logic of knowledge called
LTLY which combines linear temporal logic LTL"® with
past operators and knowledge modalities. LTL; makes us
describe many properties more compactly and naturally.

2) We present a framework to the verification of LTLj
properties of the MAS via bounded model checking based on
SAT. The SAT-based constraint solution makes very large
systems for us.

3) We solve the very important completeness threshold
problem'"” for bounded model checking of the MAS. The
proposition of the completeness threshold makes bounded
model checking complete. To the best of our knowledge,
we are the first to discuss the completeness threshold prob-
lem.

1 Interpreted System Semantics

Interpreted systems are mainstream semantics for temporal
logics of knowledge. We assume that the modeling system
is composed of multiple agents, each of which is an inde-
pendently operating process. Let Ag = {1, 2, ..., n}denote
the set of agents. We assume that each agent i € Ag can be
any of a set L, of local states. An agent’s local state contains
all the information required to completely characterize the
state of the agent: the value of each of its local variables,
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together with the value of its program counter. In particu-
lar, the information available to an agent is determined by
its local state. The state of a system at any moment can be
characterized by a tuple(/,, /,, ..., [,), where [, € L, is the
local state of agent i at this moment. We let GCL, x ... x
L, denote the global states of the system. Notice that we
have not explicitly introduced environments. For simplicity,
we assume that an environment can be modeled as an agent
in the system.

Definition 1 (models) Given a set of atomic proposi-
tions AP and a set of agents Ag = {1,2, ...,n}, a temporal
knowledge model (simply a model) over AP and Ag is a
pair M =(K,L) with K=(G, S, T, s,, ~,,..., ~,), where
G is the finite set of the global states for the system ( simply
states); TC G x G is a total binary relation on G; S is a set
of reachable global states from s,, i.e., S={se GI(s,, s)
e T'}. T'denotes the transitive closure of 7; s, € S is the
initial state; ~, S G x G(ie Ag) is a knowledge accessibili-
ty relation for each agent i € Ag defined s ~ ,s"iff [,(s') =
[,(s), where the function [,: G—L, returns the local state of
agent i from a global state s; L: G—2"" is a function which
labels each state with a subset of the atomic propositions set
AP.

It is obvious that in the system model M, the relation ~,
is an equivalence relation. Let I"C Ag. Given the knowl-
edge relations for the agents in [”, the union of /s accessi-
bility relations defines the knowledge relation corresponding

to the modality everybody knows: ~% = U ~., ~¢ denotes
iel

the transitive closure of ~ ;1 and corresponds to the relation
used to interpret the modality of common knowledge. The
intersection of I”s accessibility relations defines the knowl-
edge relation corresponding to the modality of distributed
knowledge: ~ = ’_UF ~

A path in system model M is an infinite sequence of states
such that (s,, s;,,) e T for each i=0. For a
path 7 =s,,s,, ..., let w(k) =s, and 7 denote the suffix of
7 starting from the k-th state.

Definition 2 A path 7 is a (k, [)-loop, with [ <k, if
(m(k),w()) e T and 7 = uv”, where u =7 (0), ..., 7w (Il -
1) and v=7(l), ..., w(k). We call 77 simply a k-loop if
there is an integer [ with 0 </<k for which 7 is a (%, [)-
loop.

T =805 S5 «--

i+1

2 LTLj: Linear Temporal Logic of Knowledge
with Past

We use LTL as our basic temporal language and add an
epistemic and past component to it. We call the resulting
logic linear temporal logic of knowledge with past (LTLy).
The introduction of past operators can be used to describe
more natural formulation of the wide properties of MAS,
compared with traditional pure future temporal logics.

Definition 3( syntax of LTL;) Let AP be a set of pro-
positions and Ag be a set of agents. The set of LTL; is de-
fined as follows:

o If p e AP then p, - p are the LTL; formulae;

o If fis an LTL§ formula, then Xf, Ff, Gf, Yf, Zf, Of, Hf
are the LTL, formulae;

o If f, g are LTL; formulae then f\/ g, fAg, fUg, fRg,
fSg, fTg are LTL; formulae;

e If fis an LTL; formula then K, f, D, f, E.f, C.f are
LTL} formulae, where I'C Ag.

Definition 4( unbounded semantics) Let AP be a set of
propositions, Ag be a set of agents, M be a system model
over AP and Ag, 7 be a path in M starting from the initial
state s, of M, and f be an LTL; formula. We define 7 = f
iff 77" Ef, where

o ' Epopel(s,) for pe AP; 7' EfV gon' Efor 7' E
8

srEfAgor Efand r Egi 7 EXfor 'Ef:

e EGfoVYn=i,a" Ef,

o 7' EfUge An=i such that 7" =g and #/ Ef for all i
<j<n;

e EfRge An=i, 7" Eg or #/ Ef for some i<j<n;

e FYfoi>0and 7' 'Ffi7 FZfoi=0 or 7' 'Ef;

o 7' E Of o' Ef for some 0<j<i;n' F Hfox' Ef for
all 0<sj<i;

o 7' FfSgon’ E g for some 0<j<i and 7" F f for all j
<n<i;

o 7' EfTgefor all 0<j<i: 7’ E g or " Ef for some j <
n<i,

o7 EK fothere is a path 77 starting from s, and a natu-
ral number n=0 such that 77(i) ~ ,7'(n) and 7" Ff;

e 7' ED, fothere is a path ' starting from s, and a nat-
ural number n=0 such that 7(i) ~ 7' (n) and 7" Ef;

o 7' EE, festhere s a path 77 starting from s, and a natu-
ral number n=0 such that 77(i) ~7'(n) and 7" Ef;

o 7' E C, fethere is a path 77’ starting from s, and a nat-
ural number 7=0 such that 7(i) ~57'(n) and 7"" Ef.

We call f is existentially valid in a model M(in symbols
M= Ef) if and only if there exists a path 7 in M starting
from the initial state such that 77 Ff.

3 Bounded Model Checking for LTL}

Bounded model checking based on SAT methods has been
introduced as a complementary technique to BDD-based
symbolic model checking. The main idea of bounded model
checking is to search for an execution of the system of some
length k, which constitutes a counterexample for a verified
property. To perform bounded model checking on LTLj,
we first define a bounded semantics for LTL;, which is an
approximation to the unbounded semantics. Secondly, we
reduce bounded model checking to propositional satisfiabili-
ty. Thirdly, we discuss the completeness threshold for
bounded model checking on LTL;.

3.1 Bounded semantics for LTL;

In bounded model checking, a crucial observation is that
the prefix of a path is finite. It still might represent an infi-
nite path if there is a back loop from the last state of the pre-
fix to any of the previous states. If there is no such back
loop, then the prefix does not mean anything about the infi-
nite behavior of the path. Thus when we define bounded se-
mantics for LTLE, we must consider whether a finite path
represents an infinite behavior.

Definition 5(bounded semantics for a loop) Let 77 be a
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k-loop path. Then an LTL} formula f is valid along 7 with
bound k(in symbols 77 Ff) iff 7 Ff.

Definition 6( bounded semantics for a loop) Let 7 be a
path that is not k-loop. Then an LTL} formula f is valid

along 7r with bound k(in symbols 7 Ff) iff 77 F} f, where
emE,piff pe L(w(i));mE, = piff pe L(m(i));
erkE fAgiff mE, fand 7wk, g, mELfV g iff 7 E| for
TE, &
o =, Gf is always false. 7 &, Ffiff 3j,i<j<k, wE,f,
o rE.Xfiff i<k and w ="' f;
ok, fUgiff3j,i<j<k[mE.gandVn,i<n<j, 7 F;

f1s

o, fRg iff 3j, i<j<k[wE,fandVn,i<n<j, wFE,
gls

ek, Yfiffi>0and v, i E, Zfiff i=0 or 7,
5

e 7 =} Hf iff f or a110<j<i TELf

o 7., f Sg iff 77 F} g for some 0 <j<i and 7 | f for all
j<n<i

s E.fTgiff Vje[O

n<i;

,i]: 7 E’ g or 7 = f for some j <

ek K , fiff there is a path 7'starting from s, and exists
0<n<k such that 7 (i) ~,7'(n) and 7'F, f;

e 7=, D, fiff there is a path 7’ starting from s, and ex-
ists 0 <n<k such that 77(i) ~ 7 7'(n) and 7'E}f;

e 7 =, E,. f iff there is a path 7' starting from s, and ex-
ists 0 <n<k such that 77(i) ~%. 7'(n) and 7'E}f;

e 7=, C,. fiff there is a path 7' starting from s, and ex-
ists 0 <n<k such that (7(i), 7'(n)) e (E,)" and ' F/f.

fis said to be bounded existentially valid in a model M
with the bound k(in symbols M F, Ef) if and only if there
exists a path 77 in M starting from the initial state such that
7 E,f. Now we describe how the existential model checking
problem (M F Ef) can be reduced to a bounded existential
model checking problem.

Theorem 1 Let AP be a set of propositions, Ag be a set
of agents, and M a system model over AP and Ag. And let
7r be a path in M starting from the initial state s, of M, and
fan LTL; formula, and k be a bound. Then 7 = f implies
that 77 = f.

Theorem 2 Let AP be a set of propositions, Ag be a set
of agents, and M be a system model over AP and Ag. Then
M E Ef implies that there exists a bound k< | M | x2"" such
that M =, Ef.

Theorems 1 and 2 can be proved by induction on the
length of the LTL; formula. Limited by space, we omit the
proofs.

3.2 Translation

In the previous sections, the semantics is defined for
bounded model checking on LTL;. We now reduce bounded
model checking to propositional satisfiability. This reduction
enables us to use efficient propositional decision procedures
to perform model checking.

Definition 7( unfolding transition relation)

= 1(m,(0)) A A T(m, (i),

For two inte-

gers k and n, we define Pathﬁ:

a,(i+1)), where if I(7,(0))is true then 7r,(0) is the ini-
tial state.

Definition 8(loop condition) For two integers k, [ with k
=[=0 and the path 77, let L7: =T(m,(k), 7;(I)). We no-
tice that if Path’ is satisfiable then the state sequence 7r,(0),
..., (k) is a finite path. And if ,L} is satisfiable then there
is a loop from 7r;(k) to 7r,(l). For temporal operators, our
translation method is the same as Ref. [18]. For knowledge
modalities, such as K f, what we want is to construct a new
finite path 7r,,, starting from the initial state such that f is
valid along 7, ., where n is a global variable used to compute
the number of new finite paths. Initially n =0.

Definition 9 ( translation of an LTL, formula without a
loop)

[pli": =peL(m, (i), [FAgl": =[f1:" Ngl}";
o[- pl;" =peL(m, (), [fVel;" =[/1;"VIegl"
o [Xf].": = ifi<kthen LA, else false;
® [Ff;": = V[ 2 LGA ™ = false;

[ng];;m: - .f\:/i ([g]’];’"' A h/:\i[f] Z’"'), [ng];:m: - j/:\i

(L8l V VAL

[Yf1;": =if i >0 then [f],”"" else false;
o [Zf];": =if i >0 then [f], """ else true;
©LOML™ = U, LA™ = ALAL™
© 15811 = V. ([g1}" AhAl[ﬂf"" LTl = A

(L8l VA2
o (KA =Patht, ACV (1, (D) =1, () A
(LY VLT AL ).
o [Df1E": =Pal VAL, (D) =L,(m,,())
LAV VLR A LA )).
(1 =pat NNV L (D) =1, (D)
PV VLA

and let n=n+1;
and let n=n+1;

AL 77+1yy)),and let n=n +1;

rﬂlkm = Path, /\('\:/O(V/:\I(W,,H(k"'\/),7T,,+1(k+V

n+l

+1)) EEF/\V\Z/I(WM(kw) = (i) /\V\i/](ﬂ-,m(k+v) =

(700G ACLAE Y VLT ALAT))) . and et n =

n+l.
Definition 10  ( translation of an LTL; formula f on a
(k, l) -loop)
o [pl;" =pel(m, (), [FAgli" =, [f1;" A
Lel™
o[- pli" =peL(m, (D), [fVel" = [f1;"V
Lel"s
JLXfe™: =if i <k then [f][""" else [ Xf];";

. k . k .
TEA: = VLA LGA = A A
j= mm(l i) j*mm( )

o U™ = VL1 NALAE VY GLgl A A
LS :'m /\h/:\]l ﬂ:imﬁ
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i-1

L8V VUL A ALl V Y

j=1

o [fRgli"™: = A

j=min(i.n’

LA A ALRIE™ A A 81"

o [Yf]:": =if i>0 then [f], "" else false;
e [Zf1:": =if i>0 then [f], """ else true;
N1 = LA =

j=0
i

o 151" = VLI A A LA, TR =
GLELE™V VLA™

o (KL =Pathl, AV (LG, (D) =1, (. (D)
LAV VLGLE ALY and let n=n + 15

* [D 1"
G ACCAL™ Y Y GLE LA™ ) and Tet n=n + 1

o LE 11" = Pathd A CV (VL (m, () = (o,
G ACCAL™ YV GLE N LAE™))) and Tetn=n +1;

_ . k k
o [C, /1" =Path’ /\(_\/0( /\](7r“l(k+v), . (k+v
FAANA

= Path},, A (VAL (m, (D) =1, (o,

1) € Ep AN G (ko) =, (0) AV (o, (K 0) =
(7, (D) ATV Y GLE ALA")))) , and et n =

n+l1.

Definition 11 ( general translation) Let AP be a set of
propositions, Ag a set of agents, M a system model over
AP and Ag, fan LTL; formula, and k a bound.

[M.f1: = 1mo(0)) A A TCry (i), (my (i + 1) A
(LAY VLT ALAS))

Theorem 3 Let AP be a set of propositions, Ag be a set
of agents, M a system model over AP and Ag, fan LTL;
formula, and k a bound. Then [M, f], is satisfiable if and
only if M, Ef.

Corollary 1 Let AP be a set of propositions, Ag a set
of agents, M a system model over AP and Ag, f an LTLj
formula. M F Ef if and only if there exists an integer k <

\ M \ x2"" such that [ M, f] . 1s satisfiable.

Theorem 3 and corollary 1 can be proved by induction on
the length of the LTL; formula. Limited by space, we omit
the proofs.

3.3 Determining completeness threshold

It has been shown that the unbounded semantics is equiva-
lent to the bounded semantics if we take all the possible
bounds into account. This equivalence leads to a straightfor-
ward LTL; model checking procedure. To check whether M
= Ef, the procedure checks M, Ef for k=0,1,2,.... If M
FEf, then the procedure proves that M = Ef and produces a
witness of length k. If M, Ef, we have to increase the val-
ue of k indefinitely, and the procedure does not terminate.
In this section, we establish several bounds on k& which we
call completeness thresholds of fin M. If M Ef for all k
within the bound, we conclude that M, Ef.

Definition 12 ( diameter) The diameter of a model M,
denoted by d(M), is the longest shortest path between any
two reachable states. d'(M) is the longest shortest path be-
tween the initial state and any reachable states.

Definition 13" (recurrence diameter) The recurrence
diameter of a model M, denoted by rd( M), is the longest
loop-free path between any two reachable states. rd'(M) is
the longest loop-free path between the initial state and any
reachable state, where a finite path is loop-free if and only
if there are not two same states in the path.

Notice that there exist the relationships of d'(M) <d(M)
<rd(M) and d'(M) <rd'(M) <rd(M) in the model M.
For example, Fig. 1 is a simple model M, where d(M) =2,
d'(M) =1, rd(M) =3, rd" (M) =3.

Fig.1 A simple model M

Lemma 1'®"  Given an LTL formula Fp, where p is an
atomic proposition, and a system model M, M F Ef if there
exists k<d' (M) with M, Ef.

We notice that since reachability can be reduced to an
LTL formula Fp, one of completeness thresholds for reach-
ability analysis is d'(M).

Lemma 2" Given an LTL formula Gp, where p is an
atomic proposition, and a system model M, M = Ef iff there
exists k<rd'(M) with M & Ef.

For the convenience of proofs, we define T E -~ s iff
w(j) ~.5, @ B~ siff w(j) ~ 5.

Theorem 4 Let M be a system model. For the LTLj
property f= K,p, E;p, D,.p, where p is an atomic proposi-
tion, if M k= Ef then there exists an integer k with k<d'( M)
such that M F, Ef.

Proof Without loss of generality, we only consider f =
K,p. By the definition of unbounded semantics of LTL;, M
F Ef means there is a path 7 starting from s, such that 7 F
F(pA\ ~,s,). By lemma 1, there is an integer k with k<
d'(M) such that == F(p A\ ~ .S,), that is M, Ef.

Since 7 F OFpenEfp, mF OKposmEK,p, mFOE,p
o7EEp, mEOD, pemED,p, the following corollary is
clear.

Corollary 2 Let M be a system model. For the LTLj
property f = OFp, OK,p, OE.p, OD,p, where p is an
atomic proposition, if M F Ef then there exists an integer k
with k<d'(M) such that M = Ef.

Lemma 3 Given a system model M, (s,,s) Z’r if and
only if there exists k with k< | M | such that (s,, s) e
(Er)k, where | M | is the number of states in M.

Proof It is obvious from right to left. We assume that
there is an integer v with v > \ M |, such that (s,, s) €

(E,)", that is there is a state sequence s,, s, ..., 5,_, such
that for all 0<<i<v -1, (s,,5,,,) eE. (let s=5,). Since v
> | M |, there must exist two integers i, j with 0<i <j<v
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such that s, =s,. Therefore, (s,,s) € (E;)"”"". Then if v
—j+i> | M|, we can continue as above until there is an
integer v'< | M | such that (s,,s) e (E,)".

Theorem 5 Let M be a system model. For the LTL;
property f=C,p, where p is an atomic proposition, if M E
Ef then there exists an integer k with k<< | M| such that M
= .Ef.

Proof By the definition of unbounded semantics of
LTL;, ME Ef means that there is a path 7 starting from s,
such that 7 = F(p A\~ s,). Again by the definition of un-
bounded semantics of LTL§ and lemma 1, there is an inte-
ger j with j<d'(M) such that p e L(7(j)) and 7(j) ~ S s,.
By lemma 2, there exists an integer k with k< | M | such
that (s,, s) € (E) ¥. Therefore, by the definition of bound-
ed semantics of LTLE, there exists an integer k with k <

| M | such that M E, Ef.

Corollary 3 Let M be a system model. For the LTL;
property f=OC,p, where p is an atomic proposition, if M
= Ef then there exists an integer k with k< | M | such that
M, Ef. Since 7 F OC,p if and only if 77 F C.p, corollary
4 is clear.

Theorem 6 Let M be a system model. For the LTL;
property f = FK,p, FE.p, FD,p, where p is an atomic
proposition, if M Ef then there exists an integer k with k<
d'(M) such that ME, Ef.

Proof Without loss of generality, we only consider f =
FK,p. By the definition of unbounded semantics of LTLj,
there are two states s, s’ which are reachable from s, such
that s ~ ;" and p e L(s"). By lemma 1, s, s’ are reachable

from s, in d'(M) steps. Therefore, there exists an integer k
with k<d'(M) such that M &=, EFK,p.

Theorem 7 Let M be a system model. For the LTL;
property f = K,Fp, E.Fp, D.Fp, where p is an atomic
proposition, if M I Ef then there exists an integer k with k<
d(M) such that M =, Ef.

Proof Without loss of generality, we only consider f =
K ,Fp. By the definition of unbounded semantics of LTLy,
there are two states s, s'such that s is reachable from s,, and
s'is reachable from s, s ~ s, and pe L(s'). By lemma 1, s
is reachable from s, in d' (M) steps, s’ is reachable from s
in d(M) steps. Therefore there exists an integer k with k<
d(M) such that M EK,Fp.

Theorem 8 Let M be a system model. For the LTL;
property f = K,Op, E.Op, D,Op, where p is an atomic
proposition, if M = Ef then there exists an integer k with k<
d(M) +d'(M) such that M, Ef.

Proof Without loss of generality, we only consider f =
K,Op. By the definition of unbounded semantics of LTLy,
there are two states s, s’ such that s’is reachable from s,
and s is reachable from s, p e L(s’), and s, ~,s. By lem-
ma 1, s’ is reachable from s, in d'(M) steps, and s is reach-
able from s’ in d(M) steps. Therefore, there exists an inte-
ger k with k<d(M) +d'(M) such that M =, EK,Op.

Theorem 9 Let M be a system model. For the LTL;
property f = GK,p, GE,.p, GD,p, where p is an atomic
proposition, M F Ef if and only if there exists an integer k

with k<rd'(M) such that M, Ef.

Proof Without loss of generality, we only consider f =
GK,p. By lemma 2, there is a k-loop path 7 with k <
rd'( M) such that for each j<k, 7/ = K,p. For each j <k,
By the unbounded semantics of 7/ F K,p, there is a state s
reachable from s, such that s ~ ,77(j) and p € L(s). By lem-
ma 1, s is reachable from s, in d'(M) steps. Therefore,
there exists an integer k with k <rd' (M) such that M k5
EGK p.

Theorem 10 Let M be a system model. For the LTL;
property f = K,Gp, E,.Gp, D, Gp, where p is an atomic
proposition, if M = Ef then there exists an integer k with k<
rd(M) such that M E Ef.

Proof Without loss of generality, we only consider f =
K.Gp. By the unbounded semantics of K,Gp, there is a state
s reachable from s, such that there is an infinite path 7 start-
ing from s with 77 = Gp. By lemmas 1 and 2, s is reachable
from s, in d'(M) steps and there is a k-loop path 7 with k<
rd(M) such that 77 = Gp. Therefore, there exists an integer
k with k<<rd(M) such is M=, EK,Gp.

Theorem 11 Let M be a system model. For the LTLj
property f = K,Hp, E Hp, D, Hp, where p is an atomic
proposition, M Ef if and only if there exists an integer k
with k<rd'(M) such that ME, Ef.

Proof Without loss of generality, we only consider f =
K.Hp. By the unbounded semantics of K,Hp, there is a state
s reachable from s, in d'(M) steps and between s and s,,
and there is a finite path 7, such that for each 0<j<k, pe
L(,(j)). By the definition of rd" (M), if k>rd" (M) there
exists two integers m, n with m < n <k such that 7, (m) =
a.(n). Thus we can construct a new finite path #=',,, _, =
7. (0), ...,7,(m), m (n+1), ..., 7,(k) such that for each j
<k+m-n, pel(w,,, (). fk+m-n>rd (M), we
continue as above until we obtain a finite path 7 " such that
x<rd'(M) and for each j<x, pe L(7,"(j)). Therefore,
there exists an integer k with k<rd' (M) such that M E .
EK,Hp.

Theorem 12 Let M be a system model. For the LTLj
property f = FC,.p, C.Fp, GC,p, C.Gp, C.Hp, C,Op
where p is an atomic proposition, M F Ef if and only if there
exists an integer k with k< | M | such that M = Ef.

Proof Without loss of generality, we only consider f =
FC,p. By the unbounded semantics of FC,p, there are two
states s, s reachable from s, in d'(M) steps and s ~ . s'. By
lemma 3, (s,s’) e C, if and only if there exists k with k<
\ M \ such that (s, s') e (E ,,)k. Therefore, there exists an
M | such that M = EFC,p.

In this section, for some simple LTLE formulae we find
their completeness threshold. Since finding the longest loop-
free path between two states is NP-complete in the size of
the graph, we believe that determining completeness thresh-
olds for general LTL, properties is at least NP-complete in
the size of the model.

4 Case Study

integer k with k<

We now present a short case study, illustrating why we
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introduced past operators. The system we considered is a
train controller adopted from Ref. [20]. The system con-
tains three agents: two trains and a controller. The trains,
one is Eastbound, the other is Westbound, each occupy
their own circular track. At one point, both tracks pass
through a narrow tunnel /. There is not room for both trains
in the tunnel at the same time. There are traffic lights on
both sides of the tunnel, which can be either red or green.
Both trains are equipped with a signaller, with which they
can send signals to the controller. The idea is that they send
a signal when they approach the tunnel. The controller can
receive signals from both trains and control the color of the
traffic lights. The task of the controller is, first and fore-
most, to ensure that the trains are never both in the tunnel at
the same time; the secondary task is to ensure the smooth
running of the system (e. g., the trains can always move
through the tunnel, they cannot be forced into the tunnel,
and so on).

We can model the example above with the interpreted sys-
tem as follows. The local states for the agents are

= {away,, wait,, tunnel, }

L = {red, green}

controller
L. = {away,, wait,, tunnel, }

train,

X L X

train, controller

The set of global states is defined as G =L
L, - Lets, =(away,, green, away,). Consider the follow-
ing formula:

f=G((tunnel, V tunnel,) —
Y(— (tunnel, V tunnel,) S green) )

The formula f states that between the coterminous two
trains going through the tunnel, the color of the traffic lights
must be green once. If we use the pure future temporal log-
ics, the above property will be described as follows. It is
clear that f' is more complex than f.

f =(greenR— (tunnel, V tunnel,)) A ((tunnel, \/ tunnel,) —

(green V (X(greenR— (tunnel, V tunnel,)))))

5 Conclusion and Future Work

In the model checking of MAS, the main difficulty is the
state explosion problem. In this paper, we propose a new
temporal logic of knowledge called LTL}, which combines
linear temporal logic with past operators and knowledge mo-
dalities. LTL} allows us to describe many properties com-
pactly and naturally. The bounded model checking for LTL
based on SAT is a very efficient method to overcome the
state explosion. We present a framework to verify LTLj
properties of multi-agents by the bounded model checking
based on SAT. And we are the first to discuss the complete
threshold problem for bounded model checking of temporal
logics of knowledge.

To evaluate the effectiveness of our approach in practical
application, a tool, currently, is being developed, and then
an experiment will be conducted on the tool. The SAT-
based verification method depends on the size of formulae
produced in the translation. How to reduce the size of the
formulae produced in the translation is future work.
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