Journal of Southeast University (English Edition)

Vol. 26, No. 3, pp. 410 — 414

Sept. 2010 ISSN 1003—7985

Analysis of dynamic characteristics of self-aligning ball bearing
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Abstract: A dynamics model of the self-aligning ball bearing is
proposed based on the Jones-Harris method (JHM), and a
computer program is developed to solve the equations by using
the Newton-Raphson method. A parametric analysis of the
centrifugal force and the gyroscopic moment, the contact loads,
the contact angles, the radial deformation and the radial stiffness
is carried out. The analytical results show that the applied loads
and the rotational speed are two main factors that can influence
the distributions of the contact loads and values of the contact
angles. The centrifugal force and the gyroscopic moment increase
with the increase in the rotational speed, resulting in the decrease
of the inner raceway contact load and the increase of the outer
raceway contact load. The outer raceway contact angle increases
under the centrifugal force; on the contrary, the inner raceway
contact angle decreases. Furthermore, the differences between
the inner and the outer contact angles increase with the increase
in the rotational speed. The higher rotational speed results in the
decrease in radial stiffness for the self-aligning ball bearing, and
the raceway curvature coefficient, to some extent, also influences
the radial stiffness.
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elf-aligning ball bearings have been used in high speed
S spindles. The dynamic characteristics of these types of
bearings, such as stiffness and damping characteristics, are
considered to have a major influence on the spindle dynamic
behavior.

The Jones-Harris method (JHM) is a popular method for
investigating the rolling bearing dynamics' ™, in which the
influences of the rotational speed and the applied loads are
taken into account. This method proposed a set of simultane-
ous nonlinear equations. The dynamic state parameters such
as contact loads and angles, etc. can be obtained by solving
these equations. With these parameters, there are three most
used methods for the determination of bearing stiffness coeffi-
cients: 1) To determine the ratio of deflection increments be-
tween two adjacent loads””'; 2) To combine the axial or ra-
dial stiffness of balls in the whole bearing using the virtual
work principle'®™; 3) To differentiate the polynomial load-
deflection equation which can be obtained from data regres-
sion"”. In order to avoid the iterative calculations of the
nonlinear equations, a back-propagation neural network
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(BPNN) method"” is developed to determine the stiffness of
angular contact ball bearings. However, training a BPNN is a
very delicate task as it is slow and there is no guarantee that
the achieved minimum is global. An analytical approach
presented by Hernot et al. """ calculated the stiffness matrix of
angular contact ball bearings; the proposed formulation can
facilitate the connection of the bearing behavior model with
those of the other components in the assembly but only work-
ing in the static state.

In this paper, using the JHM, the dynamics of the struc-
tural elements of the bearing are described by a set of non-
linear equations, which are solved by the Newton-Raphson
method iteratively. The expression of the bearing stiffness is
presented by the principle of virtual work. And a parametric
analysis is achieved.

1 Bearing Dynamics Model

In the present analysis, the basic load deflection relation
for each elastic rolling ball is defined by the Hertz contact
stress theory, and the load experienced by each rolling ele-
ment is described by its relative location in the bearing race-
way. It is assumed that the angular position of each rolling
ball relative to one another is always maintained due to rigid
cages. The effects such as the centrifugal force and the gy-
roscopic moment on the bearing due to the rotational speed
are considered.

In this study, an iterative bearing analysis algorithm
based on the JHM is devised. According to the rolling bear-

ing theory'"!, we obtain the following equations:
D=(f, +f,-1)D, ()
A, = Dsina +8, (2)
A, = Dcosa + 6,cosi; (3)
X,
cosa,; = ? (4)
" (f, -0.5)D, +6,;
X,
sine,; = . (5
" (f,=0.5)D, +6,,
~ A, -X, 6
cosai]-—;(fi_o's)Db_‘_aii (6)
. _ Aaj _Xaj 7
Sma”'_(fi—O.S)Db+5i‘,- (7
(A, -X)’ +(A,-X)*-[(f,-0.5)D, +5,]1° =0
(8)
X, +X, - [(f,-0.5)D, +8,]1° =0 9

Consider the equilibrium of forces in the horizontal and
vertical directions:
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Q,;sina;; - Q, ;sina,; + Dbg’COSao,. =0 (10) K= i -2 kS (14)
2M,; . where Q is the normal ball load; § is the contact deforma-
0,;cosa;; — Q,,c08ax,,; — D Sine; + F,;=0 (11)

b

The equilibrium applying to the entire bearing can be es-
tablished as follows:

VA
F, =Y Qsina; =0 (12)
j=1

z
F. - z 0, cosacosy; =0 (13)
j=1

Eqgs. (8) to (13) can be solved by the Newton-Raphson
method, and a brief flow chart is shown in Fig. 1. First, the
input data such as the bearing geometry, material, the ap-
plied load, and the operating speed are specified, and the
values of bearing displacements in the axial and the radial
direction §, and §, are assumed. Secondly, Eqgs. (8) to (11)
with initial values are solved and the values of §,;, 8,;, X,;
and X,; are obtained. After substituting such values into
Eqgs. (12) and (13), the primary unknown qualities §, and
8, are obtained. It is necessary to repeat this process of cal-
culation until the bearing displacements converge.

Solve Egs. (8) to (11)

1

Obtain §;,8,;,X,; and X,;

1

Solve Egs. (12) and (13)

Obtain §, ,6,

Output the results

Fig.1 Solving flow chart

With the obtained parameters, the contact stiffness, as
shown in Fig.2, can be obtained by

Q

o

Fig.2 Contact stiffness between the ball and raceways

tion, and k is the load deflection factor.
The radial stiffness of each ball in the inner and outer
raceways can be determined as follows:

2
K = Ki/.cos o,

i

(15)

2
K, =K, cos o, (16)
Synthesizing the ball-to-raceway radial stiffness of all
the balls, the radial stiffness of the bearing can be ex-
pressed as

2 K K. )
_ rij > roj 24T, . _
Kr—2§ X otk cos 7Z(] 1)

Jj=1 rij roj

(17)

2  Dynamics Analysis

Based on the theory for rolling bearing dynamics, an
analysis software is developed. By using the software, the
dynamic characteristics of a self-aligning ball bearing are an-

alyzed. Relevant specifications of the bearing are listed in
Tab. 1.

Tab.1 Relevant specifications of the bearing

Parameter Value
Number of the balls 16
Initial contact angle o/(°) 9
D,/mm 11.375
D, /mm 65
Inner groove curvature radius/mm 5.915
Outer groove curvature radius/mm 36.9

2.1 Centrifugal force and gyroscopic moment

Variations in the rolling element dynamic loads, the cen-
trifugal force and the gyroscopic moment acting on a ball
with rotational speed are shown in Fig. 3, where F, =300
N, F, =300 N. In general, the trends in both the centrifugal
force and the gyroscopic moment are similar when the speed
of rotation increases. At the high operating speed, the cen-
trifugal force can be significantly large compared with the
applied forces to affect the load distribution among the
balls, while the gyroscopic moment can induce the skidding
of a ball along the raceways, which can cause bearing wear
and excessive heating.

120 - 1120
100 100 E
% 80 - —a— Centrifugal force 80 5
s —0— Gyroscopic moment }E
< 60 160 Z
= 15
&0 g
£ 40 440 ¢
£ &
g g
S 20 20 é
0 40 ©

1 1 1 1

1
0 3 6 9 12 15 18
Rotational speed/(10%r -

min~1)

Fig.3 F, and M, vs. rotational speed
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2.2 Contact load

The contact angle at the inner raceway is equal to that of
the outer raceway when the bearing is under a static load, so
the contact loads applied to the bearing ball from the inner
raceway and the outer raceway are equal and opposite in di-
rection. The results are shown in Fig.4, where F, =300 N,
F_ =300 N. However, due to the effect of the centrifugal
force, when the bearing is running at high speeds, the load
acting on the inner raceway decreases while that on the outer
raceway increases at each ball location. Furthermore, the
contact load at the angular position of 180° from the radial
load direction is at the minimum.
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Contact load/N

Fig.4 Contact load vs. angular position of balls

2.3 Contact angle

The variations in the contact angles at the inner and outer
raceways vs. the rotational speed of the bearing are shown
in Fig.5 and Fig. 6, respectively, where F, =300 N, F, =
300 N. With a higher rotational speed, the inner raceway
contact angles obviously increase; on the contrary, the outer
raceway contact angles decline slightly. The contact angles
at the angular positions where the balls are subjected to less
contact loads tend to be influenced by the rotational speed.

9.0t I I I J
0 100 200 300 400

Angular position of balls/(°)

Fig.5 Inner raceway contact angle vs. rotational speed

The relationship between the contact angles and the angular
positions of balls for the self-aligning ball bearing under vari-
ous applied loads are shown in Figs.7 to 10. It can be seen
that the contact angles show a bilateral symmetry about the
action line of the radial load, and the maximum contact angle
is formed at an angle of 180° at the inner raceway. At the
outer raceway, the minimum contact angle is also formed at
the same bearing position. The contact angle decreases at the
inner raceway and increases at the outer raceway at each ball
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Fig.6 Outer raceway contact angle vs. rotational speed

location by increasing the axial load; the increase or decrease
is the maximal at the position angle of 180°. However, under
various radial loads, the contact angles at some angular posi-
tions increase and those at other angular positions decrease,
and there exist certain angular positions where the axial load
has little effect on the contact angles.
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Fig.7 Inner raceway contact angle vs. axial loads
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Fig.9 Inner raceway contact angle vs. radial loads
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Fig.10 Outer raceway contact angle vs. radial loads

2.4 Deformation

One of the key structural features of the self-aligning ball
bearing is that the outer raceway of the bearing is of spheri-
cal shape and the outer curvature radius, namely the spheri-
cal radius, is several times larger than the inner curvature
radius. The influences of the raceway curvature coefficients
on the radial deformation are shown in Fig. 11 and Fig. 12,
where F, =300 N, F, =300 N. It can be seen that either in-
crease of the raceway curvature coefficient leads to the in-
crease in the radial deformation, whereas the inner raceway
curvature coefficient has a greater impact on the radial de-
formation than the outer raceway curvature coefficient when
the bearing is running at a higher speed. Fig. 13 shows the
deformation of the bearing using different ball materials,
where F, =300 N, F, =300 N. Possessing lower density
and greater elastic modulus, ceramic ball bearings have
smaller radial deformation and greater stiffness than steel
ball bearings.
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Fig.13 Deformation of different ball materials

2.5 Stiffness

Stiffness is one of the most important parameters of a
bearing. Since the self-aligning ball bearing can mainly bear
the radial load, only radial stiffness is analyzed in this pa-
per. As demonstrated in Fig. 14 (where F, =300 N, F, =
300 N), it is found that the radial stiffness decreases with
the increase in the rotational speed, and the decrease is lar-
ger when the rotational speed is higher. The variations of
the radial stiffness with respect to the raceway curvature co-
efficients are plotted in Fig. 15 and Fig. 16, where the rota-
tional speed w = 10* r/min, F, =300 N, and F, =300 N.
Obviously, the increase of each raceway curvature coeffi-
cient leads to a decrease in the radial stiffness, although the
variation of the inner raceway curvature coefficient is less,
the caused decrease of the radial stiffness is much greater
than that of the outer raceway curvature coefficient.
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3 Conclusions

1) The variations of the contact loads acting on the rolling
balls with the angular position of the bearing are affected by
the applied loads, whereas the values of the contact loads
from the inner and outer raceways at each ball location are
determined by the centrifugal force and the gyroscopic mo-
ment, which greatly depend on the rotational speed.

2) When at a static state, the inner ball-to-raceway contact
angles are equal to those of the outer; the difference between
the two types of contact angles is enhanced by an increase in
the rotational speed. Furthermore, the loads acting on the
bearing also affect contact angles. In detail, the axial loads
affect the value of the contact angles, and the radial loads af-
fect the distribution and the value of the contact angles.

3) An accurate computation of the stiffness for the bear-
ing is required to investigate the dynamic behavior of the ro-
tor bearing system. Based on the discussion in this paper,
both the rotational speed and the raceway curvature coeffi-
cient can, to some extent, result in the decrease in the radial
stiffness for the self-aligning ball bearing.
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