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Improved results on synchronization in arrays
of coupled delayed neural networks with hybrid coupling
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Abstract: In order to investigate the influence of hybrid coupling on the synchronization of delayed neural networks, by choosing an
improved delay-dependent Lyapunov-Krasovskii functional, one less conservative asymptotical criterion based on linear matrix
inequality (LMI) is established. The Kronecker product and convex combination techniques are employed. Also the bounds of time-
varying delays and delay derivatives are fully considered. By adjusting the inner coupling matrix parameters and using the Matlab
LMI toolbox, the design and applications of addressed coupled networks can be realized. Finally, the efficiency and applicability of
the proposed results are illustrated by a numerical example with simulations.
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n the past decade, synchronization of various chaotic systems has gained considerable attention since the pioneering

works appeared'' . Especially, since chaos synchronization in arrays of linearly coupled dynamical systems was first
considered by Wu et al. "', various coupled chaotic systems have received much attention as they can exhibit some interest-
ing phenomena, and many elegant results have been derived” " . As one typical complex system, delayed neural networks
(DNNs) are verified to exhibit the complex and unpredictable behaviors such as stable equilibria, bifurcation, and chaotic
attractors. Wu et al. " studied chaos synchronization for coupled DNNs. Together with some effective techniques in Refs.
[3 —7], the researchers studied various synchronizations for delayed complex networks. However, the above results were
only presented via some complicated inequalities, which make them difficult to be checked and applied to real cases.
Through employing the Kronecker product and the LMI technique, the global synchronization was studied for DNNs inclu-
ding robust and discrete-time ones with various couplings in Refs. [8 —10], and some easy-to-test sufficient conditions were
established. For hybrid coupling, though the authors proposed some elegant results in Refs. [8 —10], those methods still
seem to be conservative and need some improvements. Thus, it is important and challenging to derive some less conserva-
tive results for arrays of DNNs with hybrid coupling. This constitutes the main focus of the present work.

In this paper, the global asymptotical synchronization of N identical DNNs with both variable interval delay and hybrid coupling
is considered and one novel LMI-based condition is derived by utilizing the Kronecker product and free-weighting matrix tech-
nique. It shows that the chaos synchronization is ensured by a suitable design of the inner coupled linking matrix and delayed link-
ing ones. Finally, the efficiency of the synchronization criteria can be demonstrated by utilizing one numerical example.

1 Problem Formulations

Suppose that nodes are coupled with states x,(#)(i=1,2, ..., N). Then the DNNs can be written as
N N N ¢

X,(t) = =Cx,(1) +Af(x,(t)) +Bf(x,(t-7(1))) +I(1) + ZZngj(t) + Z 1,Kx (t —7(1)) + Z l,jJJ’ ()xj(s)ds (1)
Jj=1 j=1 j=1 t=u(t

where x,(1) =[x, (?), ...,xl.n(t)]T are the state vectors; f(x,(+)) =[f,(x,(*)), ...,fn(x,.n(-))]T is the activation function of
the neurons; I(¢) =[I,(1), ...,In(t)]T e R" is the external input vector; A = la,],..» B=1b;],,,, C=diag{c, ...,c,} >0,
F=[f]1,... K=1k,],,,, andJ=1[j,],,, are respectively the inner coupling matrices between the connected nodes i and j at
time ¢ and ¢ — 7(1).

For system (1), the following assumptions and definition are adopted.

Al) 7(t) and v(7) denote two interval time-varying delays satisfying 0<7,<7(?) <7
v,-And we set 7, =7, -7 and v, =V, —V,.

wmT(D<sSpu< +o, 0y, <v() <
N
A2) L=[1l,],yis the configuration matrix that is irreducible and satisfies [, =1, i#j, [, = - z I . 1;>0if there is a
jELj#i
connection between node i and node j; otherwise, lij =0.
A3) For any «, 8 € R and the constants o, and ¢, , the nonlinear function f,(+) satisfies f,(0) =0, and

Received 2009-11-22.

Biographies: Zhang Haitao (1975—), male, graduate; Fei Shumin ( corresponding author), male, doctor, professor, smfei@ seu. edu. cn.

Foundation items: The National Natural Science Foundation of China (No. 60764001, 60835001, 60875035, 61004032), the Postdoctoral Key Research
Fund of Southeast University, the Natural Science Foundation of Jiangsu Province( No. BK2008294) .

Citation: Zhang Haitao, Wang Ting, Fei Shumin, et al. Improved results on synchronization in arrays of coupled delayed neural networks with hybrid cou-
pling[J]. Journal of Southeast University ( English Edition), 2010, 26(3):448 —452.



Improved results on synchronization in arrays of coupled delayed neural networks with hybrid coupling 449

[fi(a) —fi(B) - (a-B)1[f(a) -fi(B) -0, (a«—-B)] <0 i=1,2,...,n (2)

o +o, o) +o,
roy, | o)

Definition 1 Dynamic networks (1) is said to be asymptotically synchronized, if for any initial conditions ¢,(s), ¢,(s)
eC([t,-7,.4t,],R"), i,j=1,2,..., N, there exists T >, such that || x,(#) -x;(?) | <& fort>T.

2 Main Results

Here, we introduce 3, =diag{o, o, ,....0, 0, }andY, = diag{

The following lemmas are essential for deriving the synchronization criterion.
Lemmal Let U=[u,],,,.PeR"™ x=[x/,x;,....x;]  andy =[y;,y,,....y,]" withx,,y, eR",i=1,2, .., N.If
U =U" and each row sum of U is 0, then

xT(U®P)y =- u:j(xi _xj)TP(yi _y,)
IsisjsN
Lemma 2 Suppose that £2, £, 5,,(i =1, 2) are constant matrices, o, 8 [0,1]. 2+[a5, + (1 —a) £E,] +[B5,, +
(1 -p) 5,1 <0 holds, if 2+5, +5,<0 (i,j,k [=1,2)hold simultaneously.
Together with the Kronecker product, we can reformulate system (1) as the following form equivalently,

X(1) = -(I,@C)x(1) +(Iy@A)f(x(1)) + (I, @B)f(x(1-7(1))) +
(LOF)x(1) + (LOK)x(t-7(1)) + (L®J) J’;()x(s)ds +1(1) (3)

where x(1) =[x, (1), ... xy (D] f(x(+)) =[f (x,()), .o ff(x ()1 and I(t) = [I" (1), ... T°()]".

Then by utilizing the most improved techniques in Ref. [11] for achieving the stability criteria, we state and establish one
new delay-dependent sufficient condition on synchronization for system (3).

Theorem 1 Suppose that assumptions Al) to A3) hold, and the following dynamic system (3) is asymptotically syn-
chronized. There exist n x n matrices P >0,$>0,Z>0,P,>0,0,>0(/=1,2,3),Z,>0,L,(i=1,2), nxn diagonal ma-
trices U >0,V >0, W>0, H >0, and 12n x n matrices N,(i =1,2,3) such that the LMIs in (4) hold.

0,+$+$" 1,21, /7N, /7,N, 0, +6+8"-1'Z,I, /t,N, /7,N,
* -S 0 <0, * -S 0 <0 VisisjsN k=12 (4)

% * -Z * * -Z
where 6 =[N, N,-N, -N, 0 N,-N, 0],1,=[0 I, 0], 1,=[0 I, 0], and

_‘Ell 0 0 5'14 0 0 57 ES E’l‘) ‘El,l() 0 LTB 1
®= = 0 0 Wy, 0 0 0 0 0 0 0
* * -P,-HY 0 0 HY, 0 0 0 0 0 0
% * Z, 0 0 AL, 0 0 0 0 0
* * * * = 0 0 0 0 0 0 0
o= * * * * -0,-H 0 0 0 0 0 0
% e« «  + «  « = B 5 E., 0 LB
* * * * * * * e 0 0 0 vy,
* * * * * * * * -Z, 0 0 0
* * * * * * * * #* -Z, 0 0
* * * * * # * # * * -Z, 0
* * % % % % % % * * * Enz,lz—
with
E,=-L C-CL -I,NL F+F'L) -U3, +P, +w,Z, +V,Z, 5, =U3, +L{ A
E,=P-L -C'L,-I)NF'L, 5, =-I,NL/K, 5, =-I,NL\J, 5, =-[,NL J
E,=-P,+P +P,-W3, 5, =-U+Q, E;=-W-0,+0, +0,
E,=-L,-L,+7,S+7,Z Ey=-I,NL,K, 5,=-1,NL,J
o= _li,'NLzTJv Ey=-(1-wP -Vy, 5,,=-(1-pQ -V
N-1 .. -1
Proof Together with U =[u,],,, = : : |, we construct the Lyapunov-Krasovskii functional:

-1 ... N-1
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V(x(1)) = Vi (x(0) +Vy(x(1)) +V;(x(1)) (5)

where

W(x(0) =X (DU Px() +[ ¥V P)x(s) +f () (U ® Qfx())1ds +
[ W@ PYx(s) +11(x(5)) (U @ Q)fix()1ds +

1

[ G U@ PYx(s) +£((9)(U @ @)f(x(5)]ds

V,(x(1)) = j j X1(5)(U @ $)%(s) dsdg +j f £1(5)(U @ Z)%(s)dsdg
V,(x(1) = fo f px"(5) (U ® Z,)x(s) dsdo +fk j 0,57 (5) (U ® Z,)x(s) dsdo

Now, by directly estimating the derivative of V(x(7)) along the trajectory of system (3), it can be deduced that

V,(x(1) <2x" (1) (UQP)X(t) +[x"(t—7,) (UR(P, =P, +P,))x(t -1,) +
F(x(t=7))(UR(Q, -0, + @) f(x(1=7))] = (1 =) [x" (1 = 7(0)) (URP)x(1 —7(1)) +
F(x(1=7(0))(URQ)fx(1-7(1))] +[x" () (URP,)x(1) +f (x(1))(URQ,)f(x(1)] -
[x'(1-7,)(URP)x(t-7,) +f (x(t-7,)) (URQ)f(x(t-7,))] (6)

Vo (x(0) =x" () (UR(7,S +7,2))%(1) - j £'(5) (U ® 8)%(s)ds —f

1—

"X (U ® Z)%(s)ds 7

Vi(x(0) < x()(U® (v; Z,))x(1) - [f_vx(s)ds]T(U@)Zl)[ft__x(s)ds]+x(l)(U®(17,2,1 Z,)x(1) -

f—y

(1 o ;WV([) ) [J'H] x(s)ds]T(U ®Z,) [f )

t=v(1) 1=v(n)

x(s) ds] -
(] * : t)vm_ . ) U:m x(s) ds]T(U ®Z,) U:m x(s) ds] (8)

For any n x n matrices L,(i =1, 2), noting that UL = NL and checking (UQL))(L®F) =(NL) (L F), (URL])(L®
K) =(NL)Q(L;K), (URL;)(L®J) =(NL)®(L;J)for i=1,2, one can deduce

0=2[x"(N(URL)) +x" (1) (URL) [ —%(1t) - (I,QC)x(1) +(I,®A)f(x(1)) +
(I,@B)f(x(t—7(1))) +I()] +2[x"(£) (NLQL') +x"(t)(NLQL))]Fx(1) +
2[x"()(NLQL)) +x"()(NLRL)) 1 Kx(t—7(t)) +2[x"(t) (NLYL/) +

¥'(D(NL® L))] [Jf:_vx(s)ds +th_u x(s)ds] (9)

t=v(1)

In the following, we can denote the terms to simplify the subsequent proof
x;() =x,0) —x;0), flx;(+)) =flx,(+)) —flx,(+)) VisisjsN (10)

Then for any n x n diagonal matrices U >0, V>0, W>0, H>0, and 3, (i=1,2) in A3), it follows from (2) that

0<2 Y {-[x;(DUZx,(1) =2x (DU f(x, (1) +f (x,(0))Uf(x, ()] -

Isisj<sN

[x;(1 =7()) VI x, (1 —7(1) =2x,(1 —7() VI, f(x,(t —7(1))) +

frx,(t =D Vf(x,(t —=7(D))] = [x,(t =) WX\ x,(t —7,) —

2x,(1 —7) W, f(x,(t —70)) +f (x,(t —=7)) Wf(x, (1 —7)))] —

[x;(t =7, )HY x,(t —7,) —=2x;(t =7, VHY f(x, (1 —=7,)) +f (x,(t =7,))Hf(x,(t =7,))]1} (11)

For any 12n x n constant matrices N,(i =1,2,3), it follows from the Newton-Leibniz formula that

0=2 2 g;r/(l) {Nl[xij(t) _xii(t _'To) _j:mmx.,y(s)] +N2[xij(t _To) _xij(t _T(I)) _J':it)x:,;,‘(s)] +

I<i<jsN

N [x,(1 = 7(0) —x,(t —7,) —f“ x',.j(s)]} (12)

where
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(0 = [0, x50 =r), Xt =7, Fx,(0), fx(r=1)), f1x(=1,)), 80,
h(x (s))ds e () ds )
h(x,(9) 5) (j() (x,(5)) s) (j

1=v,

t

xj(r=7(0) ([

t=v(1)

T
hx,(9)ds ) f(x,(1 =) |
Together with lemma 1, ( U®L,.T)I( 1) =0(i=1,2), and combining terms (6) to (12), we can deduce

Vix(r) < Z {I](t) e +6T 7N,S7'N} +[7(t) —=7,IN,Z"'N, +[7, —r()IN,Z"'N; -

I<i<jsN

v, —v(1) v(n) -
R VP Zhpg, ]gu(z) = 3 DAL, (1
m m I<i<jsN
Through using lemma 2 and the Schur-complement, the LMIs in (4) can guarantee A,(t) <0 to be true and, thus, there
must exist a positive scalar y >0 such that A;(#) < —xI <0. Therefore, it can be obtained that

V(x(1) < 1 > Ng,.Tf(t)Al.j(t)gi,.(t) <-x > ) |x, —x ]| <0 Vx, () #0
<i<js< <i<js<
which indicates that || x, —x; || —0 for all #— + 0 and 1 <i <j<N. Therefore we can conclude that system (3), i.e., sys-
tem (1) can reach the global asymptotical synchronization, and it completes the proof.

Remark 1 Yuan et al. ”" considered the global synchronization for arrays of coupled DNNs with hybrid coupling and
in this paper, we extend constant delay to a time-varying one. Moreover, the conditions are presented via LMIs, therefore,
by using LMI in Matlab Toolbox, it is straightforward and convenient to check the feasibility without tuning any parameters.
Moreover, we estimate the distributed delay term in (8) more effectively than the ones in Ref. [10].

3 Numerical Example

In this section, one example is provided to illustrate the effectiveness of the proposed results.
Example 1 Consider a two-dimensional delayed neural network system as follows:

X(n) =-Cx(1) +Af(x(1) +Bf(x(t —7(1))) (13)
7.5 0 72 -0.2 r-1.5 -0.1 3 . P _
where €= [0 ila=[ o5 T3 B=[ o5 5 5)m(0 =0.6+0.456in(81) +0.05cos™(200), v(1) =0
-3 1 2
and f,(x,) =tanh(x,)for i =1, 2. Choosing the following inner linking matrix L = [ 1 -2 1 |and the inner coupling
2 1 -3

0.2 0
0 0.2
works with delayed coupling as

matrices F = [0 4] K= [ ] and J =0, we consider a dynamic system consisting of three coupled identical net-

¥,(1) == Cx,(1) +Af(x,(1) +Bf(x,(t —7(1))) +1(1) + ¥ L Fx(n) + ¥ LK (1 ~7(1)) (14)

Fig. 1 shows that the system has a chaotic attractor. Based on theorem 1, there does exist a feasible solution to the LMIs

in (4), and we can verify the global asymptotical synchronization for system (14). The total error of system (14) is defined
2

as error() = Y /[x,(1) —x,()]” + [x,,(1) —x,,(n]", and the total synchronous error can be depicted in Fig. 2 with the

i=1

initial conditions x, =[ -0.5 -0.3]",x,=[0.3 0.7]", andx,=[ -0.5 -0.6]".

0.6 2.0
0.4 sl
0.2 _
o \5/1.0-
0 5
0.5H
i
-0.4 Or
1 1 1 1 1 ]
-0.1 0 2 4 6 8 10

Fig.1 The synchronized trajectory of system (13) Fig.2 The total synchronous error of system (14)
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4 Conclusion

This paper investigates the global synchronization for the coupled DNNs with hybrid coupling. One novel condition is es-
tablished by employing the Lyapunov-Krasovskii functional and the generalized convex combination. It is worth pointing out
that some good mathematical techniques are employed, which can improve the earlier methods. The synchronization criteri-
on is presented in terms of LMIs, which can be easily checked by utilizing LMI in Matlab Toolbox. Finally, one numerical
example is utilized to illustrate the effectiveness of simulation results.
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