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Abstract: The state-space neural network and extended Kalman
filter model is used to directly predict the optimal timing plan
that corresponds to futuristic traffic conditions in real time with
the purposes of avoiding the lagging of the signal timing plans
to traffic conditions. Utilizing the traffic conditions in current
and former intervals, the network topology of the state-space
neural network (SSNN), which is derived from the geometry
of urban arterial routes, is used to predict the optimal timing
plan corresponding to the traffic conditions in the next time
interval. In order to improve the effectiveness of the SSNN,
the extended Kalman filter ( EKF) is proposed to train the
SSNN instead of conventional approaches. Raw traffic data of
the Guangzhou Road, Nanjing and the optimal signal timing
plan generated by a multi-objective optimization genetic
algorithm are applied to test the performance of the proposed
model. The results indicate that compared with the SSNN and
the BP neural network, the proposed model can closely match
the optimal timing plans in futuristic states with higher
efficiency.
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ontrol methodologies of traffic signals have gradually
C improved, along with the advancements in technolo-
gy. As the traffic demand at most intersections has homolo-
gous changes over time of day, traffic engineers develop
multiple signal timing plans to accommodate these changes.
In the commonly used time-of-day (TOD) control, signal
timing plans are predetermined based on numerous archived
traffic data. This type of control is suggested to be used in
places where traffic patterns are predictable, but not short-
term fluctuations in traffic arrivals or long-term changes in
traffic patterns'''. On the other hand, adaptive control sys-
tems adjust signal timings in response to real-time traffic
conditions, which help to relieve the traffic congestion. The
Sydney coordinated adaptive traffic system (SCATS) ' and
the split cycle offset optimization technique (SCOOT) " are
the most widely deployed systems. Adaptive systems, how-
ever, require major investments in terms of infrastructure
and communication hardware.
Alternatively, existing controllers can be operated with
the traffic responsive plan selection ( TRPS) control mode
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which can provide an operation level close to that of adap-
tive control systems. Like other adaptive control modes, the
traffic responsive control mode has the ability to switch tim-
ing plans in response to traffic patterns. However, the main
drawback of the TRPS control is due to the fact that the tim-
ing plan given by the TRPS method lags behind the change
in the real-time traffic pattern.

Various computational intelligent algorithms are devel-
oped to solve adaptive and responsive control problems.
These methods include the fuzzy sets'™, the genetic algo-
rithm"™, the reinforcement learning!”, and the artificial
neural networks (ANN)'". Most of these algorithms are
based on the distributed approach, where an agent is as-
signed to update the traffic signals of a single intersection
based on the traffic flow in all the directions of that intersec-
tion. Some models only implemented and tested the control-
ler on a simplified traffic network with one intersection'
and the effectiveness of the proposed controller for control-
ling a large-scale traffic network cannot be established.
Meanwhile, as ANN is a gradient descent search method,
its error function falls into local extreme points easily.
When it is used in larger space searches, multi-peak func-
tions or non-differentiable functions, the ANN cannot effec-
tively find the global minimum point.

A proactive model that utilizes a nonlinear state-space
neural network (SSNN) and extended Kalman filter ( EKF)
is presented for the traffic responsive plan selection control
mode. Instead of the common “black-box™ approach, the
SSNN topology is loosely based on the geometry of the arte-
rial route of interest””’. Accordingly, the SSNN shows that
the internal states are closely related to actual traffic condi-
tions on the sections along the route, and can directly pre-
dict the optimal timing plan that corresponds to the futuristic
traffic conditions in real time. The Kalman filter technique
is applied in the model to calibrate neural networks, which
can greatly reduce the training time of the SSNN.

1 State-Space Formulation of Traffic Responsive
Control Problem

The real-time traffic signal plan involves both spatial and
temporal relationships between some detector observable
quantities such as counts and occupancies. The proposed
model is based on a discrete state-space model, in which the
timing plan of a system in the time interval ¢ is uniquely pre-
dicted and defined by its predecessor state in the previous
time period ¢ — 1 and the inputs to the system at time interval
t. In this paper, the system inputs refer to the counts and
the occupancies obtained from the detectors.

As indicated in Fig. 1, the traffic state of the road net-
work §,(#) on time interval ¢ is uniquely defined by its pre-
vious state and the inputs u,(#) during the current time peri-
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od. The inputs are the traffic states acquired via system de-
tectors. In our application, only counts and occupancies
from the system detectors are considered.

The generic function y(¢ +1) =g[w, s(t)] estimates the
traffic signal plan in the future time interval accompanying
the traffic state at time interval  — 1 and takes a vector of all
the system detector states at time interval ¢, u(¢), as inputs.
It also incorporates a parameter vector w, which is the traf-
fic signal plan at time interval ¢ to adjust the model during
calibration.

Interpretation of the state variable s,(t) of detector i de-
pends on the chosen function f(+)""”. Here, s,(t) is inter-
preted as a representative for the input traffic conditions on
detector i at time interval z. Different classes of state-space
models can be derived from the generic formulae:

1) Autoregressive (integrated) moving average ( AR(I)
MA) models: s"(7) =u"(t), g(+) is a linear function and
let f(+) be the identity function (i.e., f: x—x). The state
of a link in this case is simply a vector which is comprised
of time mean speed and flow of the link.

2) Linear state-space models: f(-) and g(-) are linear
functions.

3) Nonlinear state-space models: If f(-) is allowed to be
nonlinear, g(-) may be either linear or nonlinear. Some ex-
amples of the nonlinear state-space models can be classified
into a specific class of the recurrent neural network (RNN),
which are further investigated in the next section.

Based on the highly nonlinear characteristics of the TRPS
traffic signal control problem, it can be argued that the
third-class nonlinear state-space models offer the best choice
for the traffic signal plan selection.
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Fig.1 State-space dynamics of a road network with K
adjacent intersections

2 State-Space Neural Network and Extended
Kalman Filter

2.1 State-space neural network

The SSNN is derived from the RNN proposed by Elman,
who provided insight into how the RNN manages to repre-
sent spatiotemporal patterns in an efficient distributed man-
ner through its weights''"’. The basic idea of the SSNN is to
add a context layer as a short memory that stores previous
internal states to learn complex spatiotemporal patterns. The
concept of taking into account previous states resembles a
Markov chain. Each time a step pattern is presented, the

unit computes its activation similar to a feed-forward net-
work. However, its net input contains a term that reflects
the internal states of the network before the pattern can be
seen. When subsequent patterns are presented, the states of
the hidden units and the output units will be the updated
functions of everything in the network.

Looking at the mathematical description of the SSNN, the
hidden layer vector s(¢) is calculated from the input vector
x(t). A weighted sum of input and bias (here, fixed at 1)
is calculated, and the results are transformed by the transfer
function:
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sl(t) zI:Ll v;l
s,(1) ALY, wi,x (1) + wh, 8,(1=1) +V b, |
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h wi x, (1) + wl s (t=1) +vi b, ]
L i=1 e=1
(1)
where s,, is the value of the m-th hidden neuron; w' is the

im

weight connectlng with the i-th input neuron and the m-th
hidden neuron; wgm is the weight connecting with the e-th
hidden neuron and the m-th context neuron; V' is the weight
of the bias associated with the m-th hidden neuron; b, is the
bias with fixed value 1 for the m-th hidden neuron; and A(+)
is the transfer function.

The well-known nonlinear sigmoid transfer function is
used to take the values from the summation results and turn
them into values between 0 and 1.

1
h(z) = (2)
Z+e
Similarly, the output layer vector y(t) is calculated as
W[ Y, wiis (0 +v b,]
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t 0 ) 0
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where w, is the weight connecting with the i-th hidden neu-
ron and the I-th output neuron; v, is the weight of bias asso-
ciated with the /-th output neuron; and b, is the bias with a
fixed value of 1 for the /-th hidden neuron.

2.2 Training SSNN with EKF

The behavior of the neural network can be formulated by
a nonlinear discrete time system:

Yy, =8(6,) +v, 4)
0.,=0,+ow, (5)

where @, is the weight parameters of the neural network
specified as a stationary process; e, is the process noise; y,
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is the observation vector; v, is the observation noise; and
g(+) is the nonlinear function of the state.

With the Taylor series, Eq. (4) can be expanded around
the state estimate @ as

y=8® + %2 0-0) +o(0) (®)

Ignoring the higher-order terms, the EKF solution to the
training problem is given by

ék :9/(71 +Kk[yk _g(ékfl)]
K, =PH/(R, +HPH, ' (7)
Pk+] :Pk _KkHZPk

At each time step, an output vector ¥, is yielded through
the SSNN model with the input vector x,. The error vector
Y. — ¥, is used to calculate the derivative matrix H,. The
Kalman gain matrix K, is computed as a function of the de-
rivative matrix H,, the approximate error covariance ma-
trix P,, and the measurement covariance noise matrix R,.
The weight parameters are updated with the Kalman gain
matrix, the error vector, and the current values of the
weight. Finally, the Kalman gain matrix, the derivative
matrix, and the current approximate error covariance ma-
trix are used to update the approximate error covariance
matrix. The topology of the SSNN and the process of train-
ing the SSNN with the EKF are shown in Fig. 2.
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Fig.2 Topology of SSNN and flow diagram for EFK training SSNN

3 Evaluation Setup
3.1 Data description

The traffic data from Nanjing is used to evaluate this
method. The test area contains four adjacent intersections
along Guangzhou Road. The traffic data used to train the
neural network is collected at the site for 7 d using 17 sys-
tem detectors. The seventh day’s data (work day) is select-
ed to test the model. Fig. 3 shows the intersection layout
and the specified structure of the SSNN model.

The input data x(¢) consists of traffic counts and occu-
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Fig.3 Layout of intersections and structure of SSNN model

pancies collected by system detectors in terms of an individ-
ual stream at each intersection every 15 min. The neurons
represent the corresponding traffic conditions at the intersec-
tions. For instance, vector x, reflects all the northbound
right turn vehicle’s counts and the corresponding occupan-
cies obtained via the system detectors in the first intersec-
tion. Four neurons s,(#) (i =1, 2, 3 and 4) in the hidden
layer represent the corresponding traffic states of these inter-
sections at time interval . The output data y(t) reflects the
traffic signal timing plan for the next time instance. To en-
sure fast and stable learning, the input and output data are
linearly scaled to the interval (0.1, 0.9).

3.2 Design of timing plans

A nondominated sorting genetic algorithm (NSGA- )"
is used to determine a maximum of eight timing plans that
can result in minimal delay and queue length of the selected
intersections. All the possible signal timing plans are origi-
nally designed by Synchro 7 software. The NSGA-1I algo-
rithm has the ability to select the optimal timing plan among
the possible timing plan sets based on the associated traffic
states. The selected timing plans are optimized with the as-
sociated traffic states so that overall delays and queue
lengths are minimized""”' .

The NSGA-1I results in a selection of four timing plans
to handle all the traffic states. The optimal timing plan asso-
ciated with the traffic state at time interval # + 1 is selected
as the output for time interval ¢ during the training phase.
The rationale here allows the SSNN-EKF model to predict
the optimal timing plan associated with the future traffic
state and implement it in a proactive fashion, rather than
implementing the optimal timing plan associated with the
current state in the future with a lagging or reactive control.
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3.3 Model solution

The functions in the neural network toolbox and the Kal-
man filter toolbox from Matlab are used to develop a program
in order to solve the model presented above. In order to ob-
tain the solution of the SSNN-EKF model, the selected mod-
el needs to initiate two classes of parameters: neural network
weight parameters and KF noise. No prior knowledge has
been found to initiate these two parameters, and random pa-
rameters are used to examine the initiation. Using real traffic
data presented in section 3. 1 to inspect the effects on the out-
puts of the proposed model, we find that, like other heuristic
algorithms, the differences between predictions and observa-
tions of the SSNN-EKF model are often significant at the be-
ginning. This is because the allocations of weight parameters
are inappropriate. However, the error is reduced sharply as
more observations become available to the SSNN-EKF model
until the deviation is reduced into a reasonable region. After
this initial “warm-up” period, the SSNN-EKF model tends to
continue making correct predictions.

4 Results and Data Analysis

In order to compare the reliability and accuracy of the
SSNN and EKF model, the performance of the SSNN
(trained by the Levenberg-Marquardt method) and another
nonlinear algorithm, the BP neural network, is investigated.
Fig.4 shows a comparison between the optimal timing plan
for the future state at 7 +1 vs. the optimal plan predicted by
the BP neural network, the SSNN-LM and the SSNN-EKF
model to be implemented at time 7 + 1 in a typical day.

Tab. 1 shows the extracted results of the proposed model
with those of the other two models. All the results of the
three selected models are used to do the correlation analysis
with the optimal timing plan obtained from the NSGA-][. The
statistical results of the differences between the test models
and the NSGA-II as well as the CPU time used to run the pro-
gram are also shown in Tab. 1. As shown in Tab. 1, we can
see that there is no great difference in these parameters, such
as the Pearson correlation, the sum of squares and the cross-
products and covariances of the two models. The established
results between the SSNN-LM and the SSNN-EKF model are
similar just because the basic component uses an SSNN to
learn the nonlinear mapping from the input to the output. All
the statistical parameters of the BP neural network fall into an
unsatisfied region; however, the BP neural network does
work well when the traffic state is constant. But when there
is a sudden change in the traffic state, it becomes unstable.
Focusing on computational time, the BP neural network has
excellent performance, while the SSNN uses a relatively long
time for its training process. Training with the extended Kal-
man filter, the computational time of the SSNN is greatly re-
duced. The test results show that the SSNN-EKF model per-
forms better than the other two models.

Tab.1 Comparison of selected models tested with real traffic data

Parameter BPNN SSNN  SSNN-EKF
Pearson correlation 0. 402 0. 835 0. 897
Sum of squares and cross-products 1.317 2.361 2. 848
Covariance 0.013 0. 023 0. 024
Error timing plan/Total timing plan ~ 38/96 22/96 15/96
CPU time/s 40. 8 1983.3 58.2
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Fig.4 Comparison of test results with real traffic data.
(a) NSGA-1I; (b) SSNN; (c) BPNN; (d) SSNN-EKF

5 Conclusion

In this paper, an SSNN-EKF model for proactive TRPS
traffic signal control is developed. An arterial road network
in Guangzhou Road, Nanjing is used to test the performance
of the proposed model. The performance of the proposed
model is compared with the other two existing models. With
optimal timing plans produced by a multi-objective genetic
algorithm (NSGA-1 ), the SSNN-EKF model has the best
performance of these three models.

The study results are very promising for the traffic control
on coordinated actuated traffic signal control. The proposed
model can be applied in the master controller for a road net-
work which requires adaptive traffic control without a huge
cost. Current coordinated actuated traffic signals control sys-
tems can apply the proposed model via selected ports. Fur-
ther research should be considered to the model preference
under congested conditions. Moreover, more algorithms on
categorizing timing plans obtained from the model into clus-
ters should be studied.
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