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Abstract: Using support vector regression (SVR), a novel non-
parametric method for recovering implied risk-neutral probability
density function (IRNPDF) is investigated by solving linear
operator equations. First, the SVR principle for function
approximation is introduced, and an SVR method for solving
linear operator equations with knowing some values of the right-
hand function and without knowing its form is depicted. Then,
the principle for solving the IRNPDF based on SVR and the
method for constructing cross-kernel functions are proposed.
Finally, an empirical example is given to verify the validity of
the method. The results show that the proposed method can
overcome the shortcomings of the traditional parametric
methods, which have strict restrictions on the option exercise
price; meanwhile, it requires less data than other non-
parametric methods, and it is a promising method for the
recover of IRNPDF.
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n recent years, many domestic and foreign research re-
I sults have shown that the market risk preference (i. e.
market sentiment), the equity prices and market returns
have a very strong correlation. The market risk preference is
a key factor in promoting asset price change, and market in-
formation, thus, is implicit in financial asset prices. How to
measure the risk preference degree in financial asset prices
becomes the subject which researchers have been concerned
with.

These approaches to derive risk-neutral probability from
observed option prices can be broadly classified as paramet-
ric and non-parametric techniques and are reviewed by Jack-
werth!" . Parametric methods choose a distribution family
(or a mixture of distributions) and then try to identify the
parameters for those distributions that are consistent with the
observed prices. In order to achieve this method, continu-
ous exercise prices from zero to infinity are required. How-
ever, the exercise price of option trading is discrete and in
the limited range. Therefore, at present, most efforts are
made on inferring and estimating the entire distribution
through the exercise price interpolation within and outside
the scope”™ . In addition, one can also specify the random
process of the parameters, and then recover the parameters
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from the observed market option prices, while the risk-neu-
tral probability can be inferred by the random process. For
example, the classic Black-Scholes option pricing model as-
sumes that stock prices follow the geometric Brownian mo-
tion. For example, Duffie et al. "™ put forward the stochas-
tic volatility model with a jump-diffusion process.

Another method involves non-parametric techniques. In
the absence of the relevant asset price random process, op-
tion pricing formula and prior restrictions on the price distri-
bution, non-parametric techniques seem more flexible. For
example, Ait-Sahalia and Lo'” provided a non-parametric
option pricing formula of kernel regression, and thus ob-
tained risk-neutral probability. Hutchinson et al. """ used a
neutral network to non-parametric option pricing. Haven et
al. """ used the wavelet analysis method to derive risk-neu-
tral probability functions from option prices. In addition,
Galati et al. '™ used the Hermite polynomial method pro-
posed by Milne and Madan'"” to recover the US dollar/
Japanese yen forward exchange rate risk-neutral probability
distribution density function. Corrado et al. """ used the
Edgeworth series expansion method to recover the risk-neu-
tral probability density function of the futures. This method
can derive the implied risk-neutral probability distribution
density function of the lognormal distribution as a reference
distribution.

According to the existing literature'" ', the common idea
to recover implied risk-neutral probability is to use option
cross-sectional data to explore state price through the discov-
ery function of the option to the price. Parametric methods
depend on the process of option prices, and have strict as-
sumptions. Although non-parametric methods do not have
too many restrictions on the data, generally large amounts
of data are required in order to recover the risk-neutral prob-
ability and results are often poor under the conditions of
small samples. In this paper, a new non-parametric method
is put forward to extract the risk-neutral probability using the
support vector regression technique, and the feasibility of the
method is proved empirically. It overcomes the shortcomings
of the traditional parametric methods which have strict restric-
tions on the option exercise price, and, meanwhile, it re-
quires less data than other non-parametric methods.

1 Method

1

1.1 Support vector regression

Support vector regression ( SVR) is a statistical or ma-
chine learning theory based on classification!"”’. To illustrate
SVR, a typical regression problem is formulated. Regres-
sion is to obtain the relationship between input and output
according to input-output data set(x, g;,) (i =1, 2, ..., [),
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where x, is a vector of the model input, g, is the actual value
and represents the corresponding scalar output, and [/ is the
total number of data patterns. The objective of the regres-
sion analysis is to determine a function f(x), so as to accu-
rately predict the desired (target) outputs g.

In support vector regression, first the inputs are nonlin-
early mapped into a high dimensional feature space .7 where-
in they are correlated linearly with the outputs. SVR consid-
ers the following linear estimation function:

f(x) =w-D(x) +b (1)

where w is the weight vector; b is a constant; @(x) denotes
a mapping function in the feature space, and w - @ (x) de-
scribes the dot production in the feature space .7, In SVR,
the problem of nonlinear regression in the lower dimensional
input space x is transformed into a linear regression problem
in a high dimensional feature space .7

A number of loss functions such as the Laplacian,
Huber’s Gaussian and e-insensitive can be used in the SVR
formulation. Among these, the robust g-insensitive loss
function L, given below is the most commonly adopted.

If |[fx)-q|=e
Otherwise

Liog = J 9l -

(2)
where ¢ is a precision parameter representing the radius of
the tube located around the regression function f(x).

The weight vector w and constant b in Eq. (1) can be es-

timated by minimizing the following regularized risk func-
tion,

2

RO = C-Y L(fx).q) +3|wl' (3

where L_(f(x,), q,) is the e-insensitive loss function in Eq.
(3); % \ w \ * is the regularization term which controls the

trade-off between the complexity and the approximation ac-
curacy of the regression model to ensure that the model pos-
sesses an improved generalized performance; C is the regu-
larization constant used to specify the trade-off between the
empirical risk and the regularization term. Both C and & are
user-determined parameters.

Two positive slack variables, & and ¢, i=1,2, ..., 1,
can be used to measure the deviation(gq, — f(x;)) from the
boundaries of the e-insensitive zone. Namely, they repre-
sent the distance from actual values to the corresponding
boundary values of the e-insensitive zone. By using slack
variables, Eq. (3) is transformed into the following con-
strained form:

min R (=5 |wl*+C Y (E+&) )

S. t.
q,-wD(x,) —b=<se+§
wed(x) -b-q<s+§&

§[’§[* =0 i=1,2,...,l

By using Lagrangian multipliers and Karush-Kuhn-Tucker

conditions on Eq. (4), it thus yields the following dual La-
grangian form. Maximize the following function

1 1
W=-2 (a +a)+ Y q(a —a) -
i=1 i=1

_Z (o) —a) (e —a)K(x,,x)) (3)

ij=1

Hence, the general form of the SVR-based regression func-
tion can be written as

f(x, a,a*) = Z (O[i* —ai)K(x,.,x) +b (6)

The support vector regression’s generalization ability can
be controlled (even in high-dimensional space) by control-
ling the two parameters C and e.

1.2 Solving linear operator equation

Known linear operator equation

Af(1) = F(x) (7

where operator A is one-to-one mapping from the Hilbert
space E, to the Hilbert space E,. Eq. (7) will be solved in
the following situations: Suppose that the function F(x) on
the right of Eq. (7) is unknown, and a number of observed
points with the error are known, i.e.,

(x,F),....(x, F) (8)

Now minimize the functional

1

R(f F) =1 X, LAY |, = F) +y(PF-Pf) (9)
in order to estimate the solution of Eq. (7) from the data
(8), where L(Af — F) is a loss function, and P is a non-
generating operator. Let ¢, (t), ..., ¢, (), ... and A, ...,
A,, ... 1s the eigen function and the eigen value of the self-
adjoint operator P-P, i.e., P+-Pd, =),p,.

Expand the solution of Eq. (7) as

®

fr) = 2}

Substitute Eq. (10) into the functional Ry(f, F), ie.,

¢, (1) (10)

R (f, F) =17 2 L(A{ Y il

(1
: md’()}

X;

and denote

(1)
VA

The above problem can be regarded as the function set,

e (D) =
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fir,w) = 2 w,p,(1) =w-D(1) (12)

Minimize the functional

1

2 LCIAw-@(D) [y = Fi[) +y(wew)
(13)

where w = (w,, .., wy, ...); D(1) =(@, (1), ..., ou(1), ...).
The operator A maps the function set (12) into the function

R(fF) =

@

F(x,w) =Af(t, w) = Y w,Ap,(1) =

r=1
:o

> ow(x) =(w, W(x))

r=1

(14)

which is linear in another feature space Y(x) = (¢,(x), ...,
Yy(x),...), where ¢ (x) =Ap,(1).

To find the solution of Eq. (7) (i.e. to find the coeffi-
cient vectors) in the function set f( ¢, w), minimize the func-
tional in the function set F(x, w) (i.e. the image space),

1
D(F)=C Y (|F(x,w)-F | ) +(w-w) k=122
i=1
then define the solution of Eq. (12) (i. e. the preimage
space) by using the parameters w. To achieve this method,
we use the cross-kernel function in conjunction with the ker-

nel function; thus the kernel function is

K(x, x,) = 2 g (x),(x;) (15)
and the cross-kernel function is

TAx;, 1) = i U, (x) e, (1) (16)
Support vectors x,, i =1,2, ..., N and the corresponding co-

efficients ;' — o; can be obtained by using the kernel func-
tion (15). The approximation vector of the support vector

regression is''”

w= Y (& —a)¥(x)

i=

Substituting w into Eq. (12), we obtain

flaa)= 3 (& ~a) (Vx)B()) =

z (CX,-* - aj)'%(xi’ t)

i=1

17

2 Solving Implied Risk-Neutral Density Function

Extracting the implied risk-neutral probability, for call
option, is to restore the implied risk-neutral probability den-

sity function f( s) from fm (s —k)f(s)ds = C(k) (For con-

venience, here the discount factor is assumed to be 1),
where s is the underlying asset price, k is the exercise price,
and C(k) is the option value.

Solving steps are as follows:

Step 1 Define the corresponding regression problem in
the image space.

Step 2  Select the kernel function K(x,y). The kernel
function of Mikhlin'"

K(x’y) = Z qu,(x)Hl(.V) =
2 _ 2 2
1 : Cxp{lxy(J_(xl »q }
Va(l-q) +4 —4q

is used in this paper. This kernel function not only has a

good smoothness, but also its local approximation perform-

ance guarantees approximation accuracy to some extent.
Step 3  Solve the corresponding cross-kernel function

K(x, 1. By ¢, (x) = Ap, (1), thenf (t-x)¢ (1)dt =
g.(x), i.e.,

(18)

f to (1)dt - j xe,(Hdt =y (x) (19)
Calculate the derivative of Eq. (19) with respect to x,
~xp,(x) + [ @ (Ddt+xe (x) =p/(x)  (20)

ie.. j o (t)di = /().

Furthermore, calculate the derivative of Eq. (20) with re-
spect to x,

. (x) =¢(x)

and then the cross-kernel function is
) ® ® , az
T, 0 = 3 ()@ (D = 2w (x)I() =K (x, )
r=1 r=1

According to the kernel function (18), we can obtain the
cross-kernel function,

a2
Tx, 1) = S5K(x,, 1) =
ot

2

2

2q°

+
Va1l -¢") (1-4")
2xtqg (x,-0°q
l+g  1-¢ )

2x,q 2(x,-0q
+ 2
(1+q l1-¢g )

V(1 -q)

(21)

Step 4 Use the support vector regression method and
kernel function K(x, y) to solve the regression problem
(find support vector x,,i=1,2, ..., N and the corresponding
coefficients 8, = o, —a;, i=1,2,...,N).

Step 5 Determine the solution using these support vec-
tors and the corresponding coefficients

N

fly =Y A x, 1)

i=1

(22)

3 Empirical Analysis

This article uses 23 options trading data based on different
exercise prices on September 12, 2007, provided by the
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Chicago Board Options Exchange. Options contracts ma-
tured on January 9, 2008, and their underlying asset is the
Manitowoc stock.

Support vector regression needs to select two parameters,
the penalty parameter C and the error &£ of insensitive loss
function. This paper selects C =50, £ =0.1, and lets ¢ =8.5
x107*. We use Matlab (R2008a) and obtain 21 support vec-
tors (91.3%) and coefficients 8, = o, — o, i =1,2, ...,
21. The values of the coefficients are as follows: 50.000 O,
50.000 0, 50. 000 0, 50.000 0, 50.000 0, —15.8684,
-50.0000, - 50. 000 0, - 50.000 0, - 50.000 O,
-50.000 0, -50.000 0, 0.000 0, 50.000 0, 50.000 O,
50.0000,35.981 4, —0.000 0, —50.000 0, —50.000 0,
-2.2380, 50.000 0, —15.331 2. Fig. 1 shows the rela-
tionship of option price C(k) and exercise price k based on
support vector regression.

259

x Raw data
o Support vector

- 5 1 1 1 1 1 1 1 1 1 ]
15 20 25 30 35 40 45 50 55 60 65
k

Fig.1 Support vector regression results of option price C(k)

By using the above coefficients 8, = o, —a;, i=1,2, ...,
23 and the cross-kernel function (20) according to f(¢)

N

= z B:7(x,, t), the corresponding implied risk-neutral

i=1

probability density function is obtained. Fig. 2 shows the
implied risk-neutral probability density function f{(¢). It can
be seen from Fig. 2 that the implied risk-neutral probability
density function is multi-peak. This result implies that there
are inconsistencies between the above implied risk-neutral
probability density function and the implied risk-neutral
probability based on BS formula, where the implied risk-
neutral probability measure is a log-normal distribution.
This result also means that market participants’ anticipations
on the future price of the underlying asset cannot be de-
scribed by a single-peak-like normal distribution, and
should be a multi-peak probability distribution.

0.6
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Stock price/dollar
Fig.2 Implied risk-neutral probability density function f{ r)

4 Conclusion

This paper develops and tests a new way of recovering the
risk-neutral probability density function (PDF) of an under-
lying asset from its corresponding option prices. Our ap-
proach is a nonparametric method based on support vector
regression. The core inversion problem is to solve a linear
operator equation. The proposed method can overcome the
shortcomings of the traditional parametric methods which
have strict restrictions on the option exercise prices. Further-
more, unlike other non-parametric methods, the method re-
quires few amounts of data. The last empirical research
proves the feasibility of the proposed method and shows that
the probability density function curve is multi-peak. It is of
great significance to restore the risk-neutral probability den-
sity function.
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