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Abstract: The differences between two sequences of nonnegative
independent and identically distributed random variables with
sub-exponential tails and the random index are studied. The
random index is a strictly stationary renewal counting process
generated by some negatively associated random variables. Using
a revised large deviation result of partial sums, the elementary
renewal theorem and the central limit theorem of negatively
associated random variables, a precise large deviation result is
derived for the random sums. The result is applied to the
customer-arrival-based insurance risk model. Some uniform
asymptotics for the ruin probabilities of an insurance company are
obtained as the number of customers or the time tends to infinity.
Key words: precise large deviation; random sub-
exponential distribution; renewal counting process; customer-
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1 Main Result

recise large deviations describe some results on the as-
P ymptotics for some rare event probabilities, which is
an important branch of applied probability. There are many
applications such as insurance risk and queueing theory
among others in this area in the last decade. Much attention
has been paid to heavy-tailed random sums. Embrechts et
al. " pointed out that random sums are the bread and butter
of insurance and mathematics. Some earlier works on large
deviations for random sums can be found in Refs. [2 —3].
Throughout this paper, let {X,, k=1} be a sequence of
independent and identically distributed nonnegative random
variables with common distribution B satisfying its tailed
distribution B(x) =1 - B(x) >0 for all x=0, {Y,, k=1} is
also a sequence of independently and identically distributed
nonnegative random variables. Denote the differences by Z,
=X, - Y,(k=1) with distribution F and finite mean u <0.
Denote the n-th partial sum (non-random sum) by §, =

2 Z(n=1). Let {N(t), t=0} be a strictly stationary re-
k=1

newal counting process generated by nonnegative negatively
associated random variables {7}, k=1}, that is
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N(t) = sup{n: ZTk = t}
k=0
satisfying ET, =A ' >0, 0 <varT, =¢” <, and

0 <varT, +2 cov(T,, T,) < o (D
n=2

Negative association is one of the reasonable dependence

structures in practice, which was introduced in Ref. [4].

Random variables are called negatively associated (NA), if

for each k=2 and any disjoint subsets A, A, of {1,2, ..., k},

cov(fi(é,i€A)). fL(€,jeA,)) <0

where f, and f, are any two nondecreasing functions such
that the covariance exists. Assume that {X,, k=1},{Y,, k=
1} and {N(t), t=0} are mutually independent. In this pa-

per, we are interested in the precise large deviations for the
N(1)

random sums S, , = 2 Z, under the assumption that the dis-
k=1

N(1)

tribution B is heavy-tailed. An important class of heavy-
tailed distributions is the sub-exponential distribution class
7 By definition, a distribution V on ( — %, ® ) belongs to
the class .7 if imV"*(x)/V(x) =2, where V"> denotes the

second Stieltjes convolution.

Kluppelberg et al. ™ ™ studied the precise large devia-
tions for random sums in some subclasses of the class ./~
Recently, Baltrunas et al. ! derived a precise large devia-
tion result for nonnegative random variables. This result is
required to be reconsidered since it used an important result
of partial sums only for the random variables with a negative
mean (see Ref. [8], theorem 4. 1); however, its result is
for nonnegative random variables. In this paper, we estab-
lish a precise large deviation for the random sums of the
differences between two sequences of nonnegative random
variables, where the random index N(t) is a renewal count-
ing process generated by nonnegative NA random variables.

Hereafter, all the limit relationships hold for 7 tending
to o« unless stated otherwise. For two positive functions
a(t) and b(t), we write a(t) ~b(t) if lim a(t)/b(t) =1
and a(t) =o(b(1)) if lim a(t)/b(t) =0. Furthermore, for
two positive bivariate functions a (¢, x) and b(t, x), we
write a(t, x) ~b(t, x) uniformly for all x in a nonempty set
A, if

a(t, x)

b(t, x) -1

lim sup =0

t—% xeA

Asymptotic formulae that hold with such a uniformity fea-
ture are usually of higher theoretical and practical interest.
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The indicator function of an event A is denoted by /,.

To formulate our main results, we need to introduce some
notations and assumptions. Let Q(u) = —logB(u), u=0 be
the hazard function of the distribution B. Assume that there
exists a nonnegative function ¢ such that Q(u) = Q(0) +

f g(v)dv, u = 0, which is called the hazard rate of B. De-
0

note the hazard ratio index by r=I1im supzg(t)/Q(t). We
need the following essential conditions for our purpose.

Condition 1 Assume that Y has a finite second moment,
and the distribution B is absolutely continuous and satisfies
1) r<1/2; 2) liminf tq(f) >2; 3) k=sup{k: EX' < } >
a(r), where

2 if r=0o0or k=0

a(r) ={2+2

if0<r<1 and k < ®
1-r

Condition 1 is a modification of condition B in Ref. [8],
which plays an important role in proving the precise large
deviations result for partial sums (see lemma 1 below).
Condition 1 is a mild one, which can be satisfied by many
common distributions such as the Weibull distribution B(x)
=exp{ —cx"},x=0,¢c>0, 0<7<1/2, where r=7<1/2,
lim tg(t) = >2 and k = >a(r) =2.

The following theorem is our main result.

Theorem 1  Assume that condition 1 and formula (1)
hold, then for any y >0 and any p > (1 -r) s,

P(Sy, —pAt>x)

MB(x) !

lim sup 0 (2)

t® xzyi

The proof of theorem 1 will be given in section 2. In sec-
tion 3, we obtain some applications in the customer-arrival-
based insurance risk model (CIRM).

2 Proof of Theorem 1

In this sequel, the constant C always represents a positive
constant, which may vary from different places. Before pro-
ving theorem 1, we require some lemmas.

We first give an important precise large deviation for par-
tial sums, which is originally due to Ref. [8]. However,
there exist some gaps in the proof of theorem 4.1 in Ref.
[8], where it missed the summand P(Z, —u >y); the ine-
quality, on page 252 in the last line, is incorrect; and the
severe problem is that the inequality to estimate /,,, on page
253 line 14, is incorrect. So, we modify it as follows. One
can refer to Ref. [9] for the detailed proof.

Lemma 1 Assume that condition 1 holds, then

holds for any sequence {t
supQ(u)/u =0.

The following lemma describes the relationships among
the hazard ratio index, the class .’and the hazard function
(see Refs. [7 —8]).

Lemma 2 If r<1, then 1)Be.% 2) Q(u)/u decreases
for sufficiently large u; 3) For any & >0, there exist posi-
tive u_ and ¢, such that Q(u) <c,u"** for uzu,.

n =1} satisfying lim/n-

n’

As for the NA renewal counting process N(t), Refs. [10
—11] obtained the elementary renewal theorem and the cen-
tral limit theorem, respectively.

Lemma 3 Let the NA counting process N(t) be the

same as in section 1. Then 1) N( t)/()\t)gl and EN(1)/
(At)—1; 2) If formula (1) is satisfied, then (N(t) — A1)/

d
(o VA'1)—>N(0,1).
In order to prove theorem 1, we divide P(S,, —uAt > x)
into three parts

P(Sy, —pAt >x) = 3 P(S, —uAt >0)P(N(1) =n) =
n=l1

InAfl <e(hAt n<(I-e(®)Ar  n>(1+e())At

I +1, +1, (3)

where £(¢) is some positive function satisfying () —0 and
te’(f)—w . We provide a series of lemmas below to prove
theorem 1.

Lemma 4  Assume that condition 1 and formula (1)
hold. Let £(#) be any positive function satisfying &(t) —0
and t&’(t)—o . Then forany y >0 andp>(1-r) ', I, =
o(AtB(x)) holds uniformly for all x=t".

Proof For any & >0, by lemma 1, there exists a suffi-
ciently large integer n, >0, such that for all u=¢, and n=n,,

P(S, —nu>u)

nB(1) l|=se 4)

Now we divide 7, into two parts,

I = )P(Sn —udt > D) P(N(1) =n) =

(T +
n<n, ny <n<(l-e(t))At

L, +1, (5)

We first estimate /,,. By r <1 and lemma 2, we obtain B
€./ It holds from lemma 4. 3(b) in Ref. [8] that F(t) ~
B(t), and so Fe.” By p>(1-r) "' >1, we choose ¢ >0
small enough such that r + £ <1/2 and p(r+e - 1) +1 <0.
Hence, by lemma 2, there exists some constant x, € (x +
MAt, x) such that

X

| < BG +pAn exp{f g du}=

B(x)
O(x +pA1) O(yt" +pAn) | _
exp{ |w|At(r + &) X+t }sexp{Ct o A }_
exp{Cr(yt” +pA) "} -1 (6)

By Fe.”/ F(t) ~B(t) and formula (6), we obtain that

L, ~ F(x +pAt) Y, nP(N(1) =n) ~

B(x +pA) EN(DI -, <
n,B(x) = o(AtB(x)) (7

holds uniformly for all x=v?".
We finally estimate /,,. By t&’(f)—o and lemma 3, we
obtain

. . N(o) -\t
lim P( | N(?) = At| >e(0)Ar) =lim P(
o

2

AO

3

At

tgz(t)) -0

(8)
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Note that x +uAt — nu= (yt" +uAt) +n|u|=t,. Thus,
by formulae (4), (6) and (8), we obtain that

L, < (1 +e) nB(x +uAt — ) P(N(1) =n) <

ny<n<(l-g(1)Ar
(1+&)(1 —e())AtB(x) P(n, < N(t) <(1 —e(1)) A1) =
o(AtB(x)) 9

holds uniformly for all x=+¢". Therefore, the desired result
follows from formulae (7) and (9).

Lemma 5 Assume that condition 1 and formula (1)
hold. Let £(#) be any positive function satisfying () —0
and t£’(t) — o . Then for any ¥ > |u|, I, = 0(AtB(x))
holds uniformly for all x=yt.

Proof By lemma 3 and the dominant convergence theo-
rem, we obtain im(A#) "' E(N(1) 1y, ,51y) =1 for any &
>0, which implies

E(N(O Ly 51 25any) = 0(AD) (10)

Since x +pAt —nu=(y +u) At +nlpl >t
formulae (10) and (8), we obtain that

by lemma 1,

n’

I, ~ nB(x +uAt —nu) P(N(1) =n) <

n>(1+e(n)Art

B(x)(EN( t)I(N(r)>(l+5Mr) +EN( I)I((1+e(r))Ar<N(r)<(1 +5)/\t)) <
o(AB(x)) + (1 +8)AMB(x) P((1 + () At <N(t) <
(1 +8) A1) =o0(AtB(x))

holds uniformly for all x=yt.

Lemma 6 Assume that condition 1 and formula (1)
hold. Let &(1) = c,logt/\t with ¢, >0. Then for any ¥ >0,
I, ~ AtB(x) holds uniformly for all x=7r.

Proof By lemma 1, uniformly for all |n - Atl <g(t) At
and x=vyt, we have

P(S, —pAt >x) ~nB(x +uAt — nw) (11)

If (n - At)u=0, then, analogously to the proof of (6), for
any £ >0 satisfying r + £ <1/2, by lemma 2, for sufficient-
ly large ¢, we obtain

1 gB(xt At — )s
B(x)
(yAt/2)
exp{(r+eve s Z005 )<
exp{ Ct"**""logt }—1

If (n - At)u <0, the proof of (12) is similar. Hence, by
formulae (11), (12), (8) and the dominant convergence
theorem, we obtain that

(12)

I, ~B(x) Y nP(N(t) =n) ~

In=xtl <e(t) At

AMB(x)P( | N(t) = At|<e(t) A1) ~ AtB(x)

holds uniformly for all x=yt.

Notice that by p >(1 —r) ' > 1, for any y >0, lemmas 5
and 6 also hold uniformly for all x=+#". Therefore, theo-
rem 1 follows from formula (3), lemmas 4, 5 and 6.

3 Application to Customer-Arrival-Based Insur-
ance Risk Model

In this section, we start by introducing the CIRM, which

satisfies the following requirements:

Assumption 1 The customer-inter-arrival times {7, k=
1} form a sequence of strictly stationary nonnegative NA
random variables. Denote the customer-arrival counting

process by N(t) =sup{n=0:0,<t}, whereo, = 2 T, re-
k=1

presents the arrival time of the n-th customer, by convention
o, =0. Assume that ET, = ' <, 0 <varT, <.

Assumption 2 At the time ¢,, the n-th customer pur-
chases an insurance policy. Assume that an insurance period
lasts 7. Then during an insurance period 7, the insurance
company has a potential risk of payment.

Assumption 3 The potential claims {X,, k=1}, inde-
pendent of {7,, k =1}, are nonnegative independent and
identically distributed random variables with common distri-
bution B and finite mean u,. The price of an insurance poli-
cy is (1 +p)u,, where the positive constant p is interpreted
as a relative safety loading. The net loss of the n-th custom-
eris X, - (1 +p)uy.

Denote the risk reserve process up to time =0 by R(x, 1)
=x — W(t), where x is the initial capital reserve and the
claim surplus process W(¢) is defined as

N(1)
WD = 3 (X = (1 +p)p,) 120

In the discrete case, the claim surplus process can be re-
written as

W, = ;urk -1 +pu,) n=1

This model is introduced in Ref. [12], which investigated
the independent case. In the independence structure, one
can also refer to Ref. [13] for some recent works. Clearly,
lemma 1 and theorem 1 lead to some precise large deviation
results for the processes W, and W(¢) in the CIRM.

Theorem 2 In the CIRM, 1) Assume that condition 1
holds, then for any y >0

P(W, >x)

nB(x +pnuy)

lim sup =0

n—® x=yn

2) Assume that condition 1 and formula (1) hold, then
for any y >0 and p>(1-r) ' >1
P(W(t) >x)

MB(x + pApwyt)

lim sup

e x=yt’

We notice that the ruin probability of an insurance compa-
ny occurring at the time ¢ can be represented as P(R(x, 1) <
0) =P(W(t) >x). Hence, theorem 2 describes the uniform
asymptotics for the ruin probabilities of an insurance compa-
ny as the number of customers tends to infinity and the time
tends to infinity, respectively.
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