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Abstract: The biharmonicity of the product map &, = ¢ X and
the two generalized projections ¢ and i are analyzed. Some
results are obtained, that is, @, is a proper biharmonic map if

and only if b is a non-constant solution of — J%J“’ (de (grad

(Ind))) + %grad | de(grad(Inb)) |* =0 and f is a non-constant

. 1
solution of —?Jl/,( di(grad(Inf))) + %grad \ dyy(grad(Inf)) |

=0, and @, =¢ x ¢ is a proper biharmonic map if and only if ¢
and ¢ are proper biharmonic maps.
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ﬁ s a natural generalization of harmonic maps, the bihar-
monic map introduced by Jiang!"™', who followed the
idea of Eells and Sampson'”', is a critical point of bienergy,

E. = 1) v,
where ¢: (M, g) —(N, h) is a smooth map between Rieman-
nian manifolds and 7(¢) is the first tension field tr,V dé.

The biharmonic map can also be characterized by the van-
ishing of the second tension field 7,(¢) = - J, (7(p)) =
- A7 ( b) - trgRN( dd, 7($p))dp =0, where J, is formally
the Jacobi operator of ¢, A = - tr,(V tye_vy ";»), and
RY(X, V) =] Voo Yl = Vixy, for X, Ye I'(TN). Since any
harmonic map is biharmonic, we are interested in non-har-
monic maps which are called proper biharmonic. Proper bi-
harmonic maps were extensively studied in the last
decade"™.

In Ref. [6], the authors studied the biharmonic maps be-
tween warped product manifolds which were first defined by
Bishop and O’Neil”" and investigated the biharmonicity of
the product map 1, x: B x ,F—B x F and of the projection
7: B x ,F—F. They also gave two new classes of proper bi-
harmonic maps by using the product of harmonic maps and
warping the metric in the domain or codomain. Perktas and
Kilic" generalized the warped product manifolds into dou-
bly warped product manifolds. They also investigated the
biharmonicity of the product map 1, x ¢: ;B X ,F—B x F
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and of the projection 77: B x ,F—F.

In this paper, we generalize some results in Refs. [6, 8]
to the general case. We analyze the biharmonicity of the
product map ¢ x iy B x ,F—B x F and of the generalized
projections @: B x ,F—B, : B x ,F—F. We obtain the
result that the biharmonicity of the product map is equivalent
to the biharmonicity of the two generalized projections.

1 Preliminaries

Let (B, g;) and (F, g,) be Riemannian manifolds of di-
mensions m and n, respectively, and b: B—(0, ), f:F—
(0, © ) be smooth functions. As a generalization of the
warped product of two Riemannian manifolds, a doubly
warped product of Riemannian manifolds B and F with war-
ping functions b and f is a product manifold B x F' with the
metric tensor g =f g, ®b’g,. We denote the doubly warped
product of Riemannian manifolds B and F by B x ,F. If f=
1, then ;B x ,F =B x ,F becomes a warped product of B
and F.

Let (B, g;) and (F, g,) be Riemannian manifolds with
Levi-Civita connections V ®and V7, respectively and let V

and V denote the Levi-Civita connections of product mani-
fold B x F and the doubly warped product manifold B x ,F,
respectively. The Levi-Civita connection of the doubly
warped product manifold B x ,F is defined by

= 1 1 )
V,Y= VXY+27X1(192)(0, Y,) +2?Y1(b')(0, X,) +

: R )
2f72X2(f )(YI’O) +2fzyz(f )(XI,O)

1 1
ng(X], Y,) (0, gradf?) —?gF(xz, Y,) (gradb’, 0)

1

for X, Ye I'(T(B x F)), where X =(X,,X,), Y=(Y,Y,),
X,, Y, eI'(TB) and X,, Y, e I'(TF). Let R and R denote the
curvature tensors of B x F' and ,B x ,F, respectively.

2 Main Results of Product Maps
Let ¢: B—B be a harmonic map and ¢: F—F be a har-

monic map.
Case 1 We consider the following product map
D, =pxip: BxF—->BxXF
D, (x,y) =((x), (y)) for (x,y) e BxF

We compute the tension field of @&,

m

(d) =tr, VP, = Z(Vdd)l)((Bj,O), (B,0)) +
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Z (Vd@l)((O, Fr)’ (0) Fr)) =

Y { V 5.0d®,((B,0)) —dd,(( v,’jB,),O)} +

j=1
n

Y { Vond(©F)) —dp 0. (VL F) | =

r=

(7(@), 7(¥))

Since ¢ and ¢ are harmonic maps, we know that @, is a
harmonic map.
Case 2 We consider the following product map
D, =¢xy: Bx, F>BxF
D,(x,y) =(e(x), y(y)) for (x,y) € Bx,F
For this map, we obtain the following results.
Theorem 1 ¢, is a proper biharmonic map if and only
if b is a non-constant solution of
1 n
—Fjw( de(grad(Inb))) + Tgrad | de(grad(1Inb)) =0
(D

and f is a non-constant solution of

—#Jw(dw(grad(lnf))) +%grad\d¢z( grad(Inf)) |> =0

(2)
Proof We first compute the tension field of @,,
- 1 1
(@) =tr(Vdd,) = ¥ (Vdd,) (7(3,, 0, (8,0 ) +
j=1

n

1 1 ~
> (Vd®,) (0. F), (0. F) ) =

r=1

1 m _
F,Z {V5.0dD,(B,0) —dD,(V,,(B,0))} +

m

#I_:] {V(O,F,)dqu(o’ F,) _dqu(g(o,p,)(or Fr))} =
1 m 2 L
F(T(go),o) +272(0, dys(gradf”)) +b2(0’ () +

2"?( de( gradb®), 0)
Since ¢ and ¢ are harmonic maps, we obtain

(@) = zfﬂz(o, d(gradf?)) +275(dg( gradb?), 0) =
m(0, d(grad(Inf))) +n(de(grad(Inf)),0) (3)

From Eq. (3), we know that ¢, is harmonic if and only if
grad(Inf) =0 and grad(Inb) =0.
By a straightforward calculation,

- Ar(D,) =trg(V27'(¢’2)) =

m

z {v#,(B/,O) v%(B,,O)T(qu) - Vg‘ﬂ,gﬂoﬁm‘,n)T(@z)} +

i=i
n

{ Vor Vo rt(®,) =V 7, F’)+(O,F')’T( D,) } =

( J%trmv *de(grad(Inb)) + 72V 2, del grad(Inb)), 0) +

(0. 3tr, V2 grad(Inf) + 1V s, A grad(Ing)
Also by using the usual definition of the curvature tensor
field of B x F, we obtain the following equations:
tr, R(dD,, 7(D,))dD, =

gR(dQ (%(Bj, 0)), (D)) )dgtﬁ2 (17

S R(d, (10, F)). 7@ Jad, (10.F) ) =

(B, 0)) +

2

fi( tr, R"(de, de( grad(Inb)))dg, 0) +

%(0, tr, R"(dy, dy(grad(1nf))) dyp)

So we have the bitension field of @&,,
7,(®,) = - Ar(P,) - tr R(dD,, 7(D,))dD, =

( - j%.]w(dgo( grad(Inb))) +n7grad | de( grad(Inb))

(0. =73, (dpCerading))) +73-grad | A grad(in) |* )
4)

Z,O) +

So we know that @, is properly biharmonic if and only if b
is a non-constant solution of
1 n
—FJ¢( de(grad(Inb))) + Tgrad | de(grad(Ind)) I>=0

and f is a non-constant solution of
1
=y (dy(grad( Inf))) + %grad | dys( grad(Inf)) |> =0

Remark 1 When ¢ =1: B—B, we have theorem 5. 1 in
Ref. [8], and when ¢y =I: F—F, we obtain theorem 5.2 in
Ref. [8].

Now we consider the following generalized projections:

¢ B x ,F—B,

P fB x ,F—F,

o(x,y) =¢(x) for (x,y) € B x ,F

P(x, y) =4(y) for (x,y) € ,Bx,F

And we also investigate the biharmonicity of the two maps ¢
and 1.
Theorem 2 ¢ is a proper biharmonic map if and only if
b is a non-constant solution of
1 n
—FJ¢( de(grad(Ind))) + Tgrad | de(grad(1Ind)) =0

Proof We first compute the tension tensor of ¢,
(B, 0),~(B,0) ) }+

> {(vde) (%(QFV),%

f%T(gD) o @ +n(dep(grad(Inb))) o ¢

Since ¢ is harmonic, we have 7(¢) =n(dep(grad(Ind))) o ¢.
By a straightforward calculation,

(@) =t (Vdg) =3 [(7dg) (8,0,

(0, F,) ) }z
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- A1(p) =t (V'r(p)) =

m

z { V+(B,,0) V+(B,,0)T(¢>) - Vg%BﬁO)‘T(B,,O)T(@) } +

Jj=1
n

2 { Vaior Veorn (@) = Vi gpronT(@) } =

r=1
n

f2

and we also obtain

2
tr, Vdg(grad(Inb)) + %grad | grad(1nd) |?

R (U 7(6) o = 3R (do( 18,00,
n(de(grad(Inb))) ) d (%( B,0) ) +

s R [ dof 2 (L -
R (dg( (0. F)). n(dg(grad(inb)) )dg -0, F) ) =
J%trgkRB( do, dp(grad(1nb))) de

We have the bitension field of ¢,

7,(¢) = - Ar(p) —tr,R"(dp, 7(¢))dp =
- %Jw( de(grad(Ind))) + %grad \ grad(1nb) \2

f
(3)
From Eq. (5), we know that the theorem is true.
Similarly, we obtain the following equations for i,
_ 1 B =
() = bjf(w) o @ +n(dy(grad(Inb))) o o
and
- m m
() = - ?J¢( dy(grad(Inf))) + Tgrad \ grad(Inf) |°
(6)

So we obtain the following results.
Theorem 3 i is a proper biharmonic map if and only if

f is a non-constant solution of
1
- bTJ‘”( dy(grad(Inf))) + %grad | dys( grad(Inf)) =0

From Egs. (4) to (6), we obtain 7,(®,) =(7,(¢), 7,
).

So we have the following theorem.

Theorem 4 @, is a proper biharmonic map if and only
if ¢ and ¢ are proper biharmonic maps.

Remark 2 When ¢ =77,: Bx ,F—B, i.e., ¢(x,y) =x
for (x, y) eBx,F, we have corollary 5. 1 in Ref. [8], and
when ¢ =77,: B x ,F>F, i.e., (x, y) =y for (x, y) € ,B
x ,F, we have corollary 5.2 in Ref. [8].
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