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Abstract: A module is called a co-* “-module if it is co-
selfsmall and o -quasi-injective. = The properties and
characterizations are investigated. When a module U is a co- * ~ -
module, the functor Hom ,( -, U)is exact in Copres™ (U). A
module U is a co- * “ -module if and only if U is co-selfsmall
and for any exact sequence 0 -M — U —N—0 with M e
Copres “(U) and [ is a set, N e Copres” (U) is equivalent to
Ext ;(N, U) HExt}f( U, U) is a monomorphism if and only if U
is co-selfsmall and for any exact sequence 0—L—M—>N—0
with L, N e Copres™ (U), N e Copres” (U) is equivalent to the
induced sequence 0—A(N) —A(M)—A(L) —0 which is exact
if and only if U induces a duality A, : ~ UgeCopres™ (U): A .
Moreover, U is a co- * "-module if and only if U is a co-* ~ -
module and Copres™ (U) = Copres"(U).

Key words: co- * *-module; o -quasi-injective; co-selfsmall,
co- * "-module

oth quasi-progenerators''’ and tilting modules over arbi-
B trary rings ">~ induce equivalences between certain cat-
egories of modules that are generalizations of Morita equiva-
lence. In Ref. [6], Menini and Orsatti introduced a general-
ization of these modules which is called * -modules nowa-
days. Colpi et al. '*”™ investigated this concept and some
others worked over a dual notion of quasi-progenerators,
called quasi-duality modules, cotilting modules ( the dual
notion of tilting modules), costar modules (the dual notion
of *-modules), which have been a popular topic in module
theory. These modules induce various generalizations of
Morita duality.

Recently, Wei''” generalized the notion of = -modules to
* "-modules which can be viewed as a generalization of
both * -modules and tilting modules of projective dimen-
sions<< n. Just as costar modules to #* -modules done by
Colby and Fuller U Yao et al. "™ introduced the dual situ-
ation of #* "-modules: co- * "-modules. Then the properties
and characterizations of co- * "-modules are studied and it is
proved that co-selfsmall n-cotilting modules are co- s "-
modules.

In this paper, we mainly consider a more general setting.
We introduce the notion of co- * *-modules which generali-
zes co- * "-modules. The most important results on co- * "-
modules are extended to co- # *-modules. In particular, we
present a characterization of the co- * “-module U with S
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=End(,U) in terms of category duality:
A, =Homy( -, U): CoD:A , =Hom,( -, U)

between full subcategories C C S-Mod and D € R-Mod where
C consists of modules N such that Ext;(N, U) =0 for all i=
1, and D consists of modules o« -copresented by U.

1 Preliminaries

All the rings have non-zero identity and all the modules
are unitary. For every ring R, R-Mod (Mod-R) denotes the
category of all the left (right) R-modules. Let ,U e R-Mod.
A left R-module ;N is called n-copresented by U if there
exists an exact sequence 0— N—U"—-U"—... U —U""
where [,(0<<i<n —-1) are index sets. We say that N € R-
Mod is « -copresented by U if it is n-copresented by U for
all n. Denote Copres”(,U) and Copres “ (,U) with the cat-
egory of all the modules that are n-copresented and o -copr-
esented, respectively by ,U. It is clear to see that there is an
inclusion between categories: Copres * (,U) C Copres "*'
(,U) C Copres "( ,U). Denote Copres *( ,U) by Copres
(,U) and Copres '(,U) by Cogen(,U) as usual.

Let R and S be rings and U, be a given bimodule. We
denote A , the functor Hom ,( -, U) and A, the functor
Hom ( —, U), both of which can be simply denoted as A,
or A if no confusion appears. It is well known that (A ,,
A, ) is a pair of adjoint contravariant functors with the ca-
nonical morphism:

8y: X—A’X with x >(f F>f(x))

A left R-module ,U is said to be selfsmall if for any set X
there is the canonical isomorphism Hom , (U, U") =
Hom (U, U)™. U is called n-quasi-projective if for any
exact sequence 0—M—U" —-N—0 in R-Mod with M e
Pres"”'(,U), and the induced sequence 0—Hom ,( U, M)
—Hom (U, U”)—Hom (U, N)—0 is exact. Dually, a
left R-module ,U is called co-selfsmall if for any set I there
is the canonical isomorphism Hom (U, U)” =Hom ,(U’,
U). ;U is n-quasi-injective if for any exact sequence 0—M
—U'—»N—0 with ;N e Copres" ' (,U), and the induced se-
quence 0—A(N) —A(U")—A(M)—0 is exact.

Lemma 1'"'  For any X in R-Mod or Mod-S, and a bi-
module U, 8, is a monomorphism if and only if X e
Cogen(U).

By taking a free resolution of N,, one can easily obtain
the following result.

Lemma 2 Let ;U e R-Mod and S = End(,U). Then
A, (N) e Copres(,U) for any Ng € Mod-S. If, moreover,
Ext ((N, U) =0 for 1 <i<n, then A, (N) € Copres "**(,U).
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Let ;U e R-Mod. U is called a co- * "-module if U is
co-selfsmall, (n + 1)-quasi-injective, and Copres nl (:U)
=Copres " (,U). In Ref. [12], the following result is
proved.

Theorem 1  Let ;U be a left R-module and § =
End(,U). Then the following conditions are equivalent:

1) U is a co- * "-module;

2) U is co-selfsmall and for any exact sequence 0—M—
U'—>N—0 in R-Mod, where M e Copres "(U) and [ is a set,
we have N e Copres "(U) if and only if Ext (N, U) —
Ext IR( U', U) is a canonical monomorphism;

3) U is co-selfsmall and for any exact sequence 0—L—
M— N—0 where L, M e Copres "(,U), we have N e
Copres "(,U) if and only if 0—A(N) —A(M)—A(L)—0 is
exact;

4) U induces a duality A, : * UgeCopres "(,U): A,

where * U = {N | Ext {(N, U) =0 for any i=1}.

2 Co- * “ -Modules

Motivated by the idea of * *-modules'"* and the co- * "-

modules'”, a more general setting is considered in this pa-
per. First we introduce the following notion.

Definition 1 An R-module U is said to be oo -quasi-
injective if for any M e Copres * (U) and any infinite
U-copresentation of M: 0—M— U"—U"—..., the induced
sequence A(U") —A(M)—0 is exact.

Lemma 3 The following are equivalent for an R-module
U:

1) U is = -quasi-injective;

2) For any infinite exact sequence 0—-M—U"—U"—...,
the induced sequence A(U") —...—A(U") —>A(M) —0 is
exact, where n=1;

3) Any infinite exact sequence 0—M—U"—U"—...is al-
so exact after the functor A.

Proof 3) =2) = 1) are clear.

1)=3) For any i=1, let K, = Ker( U'—U"). 1t is
easy to see that 0—K,—U"—U""'—...be an infinite U-copre-
sentation of K;,. Hence we obtain that A( U")HA(K‘.)HO is
also exact. Then it follows that the induced infinite se-
quence ...—A(U")—A(U")—A(M)—0 is exact.

Now we can give the definition of co- * *-modules.

Definition 2 An R-module U is said to be co- * *-mod-
ule if U is co-selfsmall and o -quasi-injective.

From definition 2 we clearly see that all the co-selfsmall
injective (or more generally, n-quasi-injective) modules are
co- * “ -modules. In particular, all the co- * "-modules are
co- * ~ -modules but the converse fails clearly. In fact, we
have the following results.

Proposition 1 U e R-Mod is a co- * "-module if and only
if U is a co- * * -module and Copres "(U) = Copres ~ (U).

Proof The necessity is obvious. Conversely, it suffices
to show that U is (n + 1)-quasi-injective. Let 0—-M—U'—
N—0 be exact with N e Copres "(U), where [ is a set. By
hypothesis, M e Copres “ (U), and U is o -quasi-injective.
Hence, we have A(U")—A(M)—0. Therefore, U is (n +
1) -quasi-injective and U is a co- * "-module.

Proposition 2 Let U be a co- * ~-module. Then

1) §,, is an isomorphism for any M e Copres ~ (U);

2) A (Copres “(U)) = Uy = {Ny | Ext (N, U) =0 for
any i=1}, where S =End(,U).

Proof 1) For any M e Copres “ (U), we have an exact
sequence 0—M—U'—N—0 with N e Copres * (U), where
I is a set. By hypothesis, U is o -quasi-injective. Hence,
the induced sequence is exact. It is easy to see that the fol-
lowing diagram commutes:

0 A’ (M) AP (U A*(N) Exty(A(M), U)
o] sl s
0 M U N 0

By lemma 1, §, is a monomorphism. Since §,, is a natural
isomorphism, §,, is an isomorphism.

2) For any M e Copres © (U), we consider again the
above exact commutative diagram. Notice that N e
Copres “ (U), so 8, is also an isomorphism by 1). It fol-
lows that Ext s (A(M), U) =0. Applying the same argu-
ments to N, we also have Ext {(A(N), U) =0. Now we de-
rive that Ext ’S(A(M), U) =0 for all i=1 from the fact that
Ext s(A(N), U) =Exi "' (A(M), U) for any i=1. Hence,
we have A (Copres “(U)) C " U,.

On the other hand, for any M e * U, we have A(M) e
Copres “ (U) by lemma 2. Take the exact sequence 0—L—
S —M—0, where I is a set. Then Le *U and A(L) e
Copres “ (U). Clearly, the induced sequence 0—A(M) —
A(S") (=U")—>A(L)—0 is exact. Since U is a co- * *-
module, we have the following induced commutative dia-
gram with exact rows:

0 L s M 0
oo e b
0 A*(L) A’ (S?) A’ (M) 0

Notice that §,. is a natural isomorphism, so §,, is an epi-
morphism. Similarly, §, is also an epimorphism. It follows
that §,, is an isomorphism. Therefore, M = A (M) =
A(A(M)) e A (Copres “ (U)). This shows that * U, C
A (Copres “(U)). Hence we obtain the conclusion.

Lemma 4 Let U be a co-#* “-module. Then A is an
exact functor in Copres “ (U).

Proof Considering any exact sequence 0—L—M—N—0
in Copres “(U), we have an induced exact sequence 0—A
(N)—>A(M) —>A(L) —>X;—0, where X; =Im(A(L) —
Ext (N, U)). Then we obtain two short exact sequences: 0
—A(N) —>A(M)—Y—0 and 0—Y—>A(L) >X—0 with Y =
Im(A(M)—A(L)). Applying the functor A, to the first se-
quence, we obtain the following commutative diagram with
exact rows:

0 L M N 0
s
0 ——A(Y)——A (M) ——A*(N)—Exty (Y, U)

Since U is a co-* *-module and M, N € Copres ~ (U),
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we have that 8,, and 8, are isomorphisms and that Ext (A
(M), U) =0 =Exi ;(A(N), U) for any i=1 by proposition
2. Hence we obtain that Ext ;( Y,U) =0 =for all i=1 and
that L=A(Y). Thus Ye ~Ug=A (Copres “(U)), also by
proposition 2. Put ¥ = AD for some D e Copres ~ (U).
Then we obtain

Y=A(D)=A(A*(D)) =A*(A(D)) =A*Y
It follows that
X, = Coker( Y—>A(L)) = Coker(A’Y—A(A(Y))) =0

Hence 0—A(N) —A(M)—A(L)—0 is exact.

We are now in a position to give some characterizations
of co- * “-modules which are similar to the characterizations
of co- * "-modules.

Theorem 2 Let U e R-Mod and S =End(,U). Then the
following conditions are equivalent:

1) Uis a co- * “ -module;

2) U is co-selfsmall and for any exact sequence 0—M—
U'—N—0 with M € Copres “(U) and I is a set, we obtain
that N e Copres * (U) if and only if Ext , (N, U) —
Ext IR( U,U) is a monomorphism canonically;

3) U is co-selfsmall and for any exact sequence 0—L—M
—N—0 with L, N € Copres “ (U), we obtain that N e
Copres * (U) if and only if the induced sequence 0—A(N)
—A(M)—A(L)—0 is exact;

4) U induces a duality AU): + U,=Copres ~ (U): A({‘.

Proof 1)=3) The necessity follows from lemma 4.
We now prove the sufficiency. Assume that the induced se-
quence 0—A(N) —A(M)—A(L)—0 is exact. Applying the
functor A, , we have an exact sequence Ext ;(A(M) ,U)—
Exi {(A(N), U)—Ext ;"' (A(L), U) for any i=1. Since U
is a co- * “-module, Ext {(A(M),U) =0 =Exi ;"' (A(L),
U) for all i =1 by proposition 2. Hence we obtain that
Ext ((A(N), U) =0 for all i=1. It follows that N e Copres
*(U) by lemma 2.

3)=2) is clear.

2)=1) We only need to prove that U iso -quasi-injec-
tive. For any exact sequence 0—M—U'—N—0 with N e
Copres “ (U) and I is a set, we obtain that A(U') —A(M)
—0 is exact by hypothesis 2).

1)=4) By proposition 2 and lemma 2.

4)=1) Since S e* Us, S is reflexive and we obtain
that (Hom (U, U))" =8" =A*(5") =A(A(S")) =
A(U") =Hom ,(U', U).

Thus U is co-selfsmall. For any exact sequence 0—M—
U'—N—0 with N e Copres “ (U), we have the induced ex-
act sequence 0—A(N) —A(U") —A(M)—X,—0 where X,
=Im(A(M)—Ext IR(N, U)). As in the proof of lemma 4,
we obtain the following commutative diagram with exact
rows:

0 M U N 0

b

0 —A(Y)—A’(U)——A’ (N)—Exty( Y, U)

where Y =Im(A(U') —A(M)). Then after the same proce-
dure, we obtain that X; =0; i.e., U ise -quasi-injective.
Therefore, U is a co- * ~ -module.

Corollary 1 Let U be a co-#* ~-module with S =
End(,U) and M e Mod-S. If Ne KerExt {°( -, U), then
N=0.

Proof By theorem 2, we obtain that N=A(A(N)) =0.

Proposition 3 Let U be a co-:* ~-module. Then
Copres “(U) is closed under extensions if and only if
Copres “ (U) C U = {,M | Ext (M, U) =0}.

Proof The necessity. For any M e Copres “ (U) and

any extension of U by M:0—U *f>N—>M—>0, we obtain
that N e Copres “ (U) by assumption. By theorem 2, the in-
duced sequence 0—A (M) —>A(N) —A(U) —0 is exact.
Therefore, there exists a morphism g: N—, U such that gf =
1 . This shows that Copres * (U) C, U"".

The sufficiency. For any extension of L by M: 0—L—N
—M—0, where L, M € Copres “ (U). By assumption we
obtain that the induced sequence 0—A(M)—A(N)—A(L)
—0 is exact. According to proposition 2, both §, and §,, are
isomorphisms and A(L), A(M) e * U. Then we obtain that
8, is an isomorphism and A(N) € * U. Hence, N=A*(N) =
A(A(N)) e Copres “ (U) by lemma 2, i.e., Copres “ (U)
is closed under extensions.
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