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Abstract: A multichannel matching pursuit (MMP) algorithm
is proposed to decompose the one-dimensional multichannel
non-stationary magnetoencephalography ( MEG) signal at a
single-trial level. The single-channel matching pursuit ( MP)
linearly decomposes the signal into a set of Gabor atoms, which
are adaptively chosen from an overcomplete dictionary with
good time-frequency characters. The MMP is the extension of
the MP, which represents multichannel signals using linear
combination of Gabor atoms with the same occurrence,
frequency, phase, and time width, but varying amplitude in all
channels. The results demonstrate that the MMP can optimally
reconstruct the original signal and automatically remove artifact
noises. Moreover, the coherence between the 3D source
reconstruction and the prior knowledge of psychology further
suggests that the MMP is effective in MEG single-trial
processing.
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he traditional approach to dealing with evoked magnet-
T ic fields in the MEG, or electrical potentials in EEG is
to apply the well-known and widely accepted repeated-stim-
ulus paradigm followed by averaging the measured fields or
potentials across repetitions. Frequent repetition of the stim-
ulus aims to reduce the contributions from non-stimulus-
locked and non-phase-locked activity. Although the avera-
ging method reduces the contribution of background brain
activity on the order of the square root of the number of tri-
als, it completely loses the trial-to-trial variation in the aver-
aging procedure.

Many approaches have been taken to address the problems
of estimating single-trial responses over the last decades'".
The main problem in such single-trial analyses is to extract
the actual stimulus-evoked brain activation from the ongoing
noise, which is considered to represent any other activations
not related to the actual stimulus. In addition, single-trial
analysis has not been sufficiently validated by studies of
source localization on either simulated or empirical MEG
data.

In this paper, we propose to use an adaptive algorithm
MMP' for the Stroop word color interface single-trial ana-
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lyses. The MMP is a relatively new signal decomposition
method, where the MEG data are decomposed into a sum of
waveforms (usually termed atoms) chosen from an over-
complete dictionary of atoms each being defined in time,
frequency, and space. The parameterized atom allows the
extraction of a certain part of a signal within given time and
frequency intervals . Removal of artifacts or the extraction
of signal components of interest can be accomplished in the
MEG single-trial multichannel analysis. Furthermore, in or-
der to validate the algorithm, the distributed source recon-
struction technique is applied to estimate the source loca-
tion, and it is compared with the professional physiological
opinion.

1 Materials and Method
1.1 Materials

The subject under study is a healthy female with the age
of twenty years. The data is recorded using an Omega 2000
(VSM Med Tech Inc., Port Coquitlam, Canada) 275-chan-
nel device placed in a magnetically shielded room, which
provides a considerable amount of shielding from noise and
interference. The Stroop stimuli are the color words, “red”,
“blue” and “green”, printed in red, blue or green ink. The
color words are presented in an incongruent (e. g., “red” is
displayed in blue color) or a congruent color (e. g., “red”
is displayed in red). The stimuli of the task consist of 48 in-
congruent and 48 congruent stimuli, which are pseudo-ran-
domly presented. Each stimulus consists of an eye fixation
cross of 500 ms and an incongruent/congruent stimulus of
1 000 ms. The subject is asked to name the color quickly
and accurately in a very small voice. These MEG data are
sampled at 1 200 Hz and filtered from 1 to 48 Hz. 120 sam-
ples of pre-stimulus data and 720 samples of post stimulus
data are included as well for each trial. The individual MRI
data is collected using a GE 1. 5T Signa system. In this pa-
per, only the incongruent data is analyzed.

1.2 Method

The single-channel matching pursuit (MP) is an adaptive
algorithm that finds a suboptimal solution to the problem of
an optimal representation of a signal in a redundant dictiona-
ry of functions'”'. We use a dictionary composed of Gabor
functions, which are built of cosines modulated by Gaussian
envelopes:

g,(1) =k(y)e*““’*"V”VCOS(2qT %(t—u) +w) (1)

where y = {s, u, v, w}; s is the scale; u is the translation; v
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is the modulation frequency; and w is the phase. N repre-
sents the signal’s length.

The constant k() is adjusted such that | g (7) || =1.
Gabor dictionary D = {g, }is composed of all y = (d,
pa’ Au, ka vy witha=2, u=1/2, v=m, 0 <j<log,N, 0
<p<27"'N,0<k<?2"". The phase parameter is opti-
mized separately in numerical implementations.

The multichannel matching pursuit is the extension of the
single-channel MP algorithm, which linearly decomposes a
multichannel signal f= (f', f°, ..., f") of n single channels
into atoms of the form (g, ...,g,) e D. Let R’f' =f' be the
Oth-order residual of channel /. A multichannel matching
pursuit is an iterative algorithm that subdecomposes each
channel’s residue Rf by projecting it on a vector of D that
matches Rf almost at best. The procedure is repeated each
time on the following obtained residue. The selection of a
Gabor atom is not random. It is defined by the choice func-
tion, which associates with the summation of all channels’
inner products between each channel’s residue Rf and each
Gabor atom in D. For a given residual R*f' of iteration k=
0, we select the best atom g, using the following criterion:

n

> [(R'f'.g,) | Bagsgg[z [(R'f'g,) [P (2)

=1

where (R'f, g%> defines the correlation coefficient compu-
ted by the inner product of (R'f’, g,); ae(0,1] is an op-

.. 5 . .
timized parameter™. Phase parameter w, is defined as

_ - k ol 2
w, =arg max 3. (R 80 | (3)
Then the new standard of selecting the best atom g, in the
k-th iteration is updated as follows:

> (RS g, |7 = arg ;nagiz (R g, |7 (D
=1 €V T=1

where D, denotes the set of atoms that satisfy Eq. (2).

After M iterations, the component f' finally leads to the
following expansion formula:

M-1

1= ;) (R, 8iyewy 28y wy F R"f! (5
However, the atoms selected by the above MMP algo-
rithm are not all useful components. The frequency parame-
ters of relative long atoms (high scale value) are more re-
sistant to noise than those of relative short ones, whereas the
translation parameters of relative short atoms ( small scale
value) are more resistant to noise than those of relative long
ones. It has also been shown that the EEG consists of sub-
second epochs with stable spatial configuration ( microsta-
tes) lasting about 100 ms and separated by rapid topographi-
cal changes ''. Those atoms, which are less than 1.5 peri-
ods "' of the cosine modulation falling within half-width of
the Gabor envelope and lasting less than 100 ms, or bigger
than 5 periods of the cosine modulation falling within half-
width of the Gabor envelope and sustaining over the entire

time interval, in this study are treated as noises.

2 Results

2.1 MMP reconstruction results

Results for the first incongruent Stroop trial using the
MMP algorithm is shown in Fig. 1 with the reconstructed
sensor signals by every 60th channels. We set o =0.9 ac-
cording to experiences. The search stops at the 32nd itera-
tion when the energy changing rate is smaller than 10 ~°.
89.56% of the data energy is approximated in this iteration.
From Fig. 1, we find that the MMP extracts the main fea-
tures of all the channels and reconstructs the signals basical-
ly fitted to the original signals. Moreover, the residual sig-
nal, which may be directly related to the background noise,
is obtained when the algorithm stops iterating.

&

} 500

R 0

-2

k7]

=l

%0 -500 1 | 1 1 1 Il |

= -100 O 100 200 300 400 500 600
t/ms

b (a)

} 500

2

2

g 0

&

2

%0 -500 1 1 1 1 1 Il ]

= -100 O 100 200 300 400 500 600
t/ms

5 (b)

} 500

g A

E o "\ ot

2 7

T

=l

%0 -500 1 | 1 1 1 Il |

= -100 O 100 200 300 400 500 600
t/ms

5 (e)

} 500

g

E o0

o

2

%0 -500 1 1 1 1 1 Il I

= -100 O 100 200 300 400 500 600
t/ms
(d)
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Fig.1 Comparison between the reconstructed signal using

MMP and the original signal. (a) Channel 60; (b) Channel 120;
(c) Channel 180; (d) Channel 240

2.2 Artifact rejection results

The MEG sensor data can be described in terms of unob-
served evoked and background factors with additive sensor
noise. After the MMP is applied to the noisy multichannel
data, some of the selected atoms will correspond with such
activities (e. g., eye blink, background activity, etc.).
Artifacts can be detected in the given space of scale and
modulation. Using this feature, the algorithm cleans the
stimulus-evoked data by removing the interference from
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Fig.2 Artifact atoms and their topographic approximation. (a) to (c) Artifact atoms selected from iteration 25, 29 and 31, respectively;

(d) to (f) Their corresponding topographic approximations

background components and noise artifacts. Three atoms in
this single trial are identified as noisy sources. Fig. 2 shows
artifact noisy atoms and their corresponding topographic ap-
proximations. According to the artifact removal criterion,
the atoms in Figs.2 (a) and (b) can be classified as peak
artifacts while the atom in Fig. 2(c) can be regarded as
background noise.

2.3 3D source reconstruction results

In order to further validate the algorithm, a distributed
approach is applied to estimate the MEG source locations.
This method results in a spatial projection of sensor data into
a 3D brain space and considers brain activity as comprising a
very large number of dipolar sources spread over the cortical
sheet, with fixed locations and orientations. This renders
the observation model linear, the unknown variables being
the source amplitudes or power. It is implemented in
SPM8'™, a toolbox developed using Matlab. SPMS8 exploits
hierarchical or empirical Bayes to solve the distributed
source reconstruction problem in EEG and MEG, which
rests on the automatic selection of multiple cortical sources
with compact spatial supports that are specified in terms of
empirical priors. This means that the approach automatically
selects either a sparse or a distributed model depending on
the data and obviates the need to use priors with a specific
form (e. g., smoothness or minimum norm) or with a spa-
tial structure . Liotti et al. """ pointed out that 350 to 500
ms post-stimulus is a critical time period in mediating the
conflict involved in the Stroop color word interference. Fig.
3 shows the inverse reconstruction results in this time period
using the MMP-preprocessed first trial’s signals and the 48-
trials-averaged signals respectively. The obtained recon-
structed activities are shown in a 3D voxel space. Previous

neuroimaging studies in healthy volunteers have shown that
the anterior cingulated cortex ( ACC) appears to be heavily
involved in the Stroop color word interference, although
other areas have been less consistently reported '"'. Obvi-
ously, ACC is significantly activated in both Figs. 3 (a) and
(b), which is basically consistent with the prior knowledge.
However, the activation strength of the ACC in Fig.3(b) is
lower than that in Fig.3(a), which may be associated with
habituation or fatigue.

0
(a)

Fig.3 Brain active map of Stroop word-color incongruent test
during the period of 350 to 500 ms (p < 0.005 (uncorrected),

cluster >5). (a) With MMP-preprocessed first single-trial signals; (b)
With 48-trials-averaged signals

3 Discussion

This paper introduces the MMP method to MEG single-
trial analysis. It takes advantage of the fact that the multi-
channel data may be decomposed into a sum of atoms local-
ized in the time-frequency space of interest. The time-fre-
quency characters of the chosen MMP atoms are described
by their Gabor atoms and the spatial properties are represen-
ted by their correlation coefficients. The time-frequency
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property enables the identification, extraction and descrip-
tion of atoms with biological meaning as well as the identifi-
cation and removal of artifact atoms. In real signals, atoms
with long time support may denote power supply noise or its
higher harmonics; otherwise, they may represent artifacts
peaks ', These kinds of unwanted atoms are removed from
the signal approximation.

How to validate the reliability of results given by single-
trial analysis remains an open question'”'. Although we do
not have definitive proof that our results exactly reflect the
real physical implication inside the data, there are two as-
pects of the method we can learn from for assessing the
quality of results.

First, the MMP is adapted in an overcomplete Gabor dic-
tionary whose structure is randomized to avoid statistical bi-
as. Compared with the Gabor atoms, the window Fourier
transform atoms have a constant scale, while the wavelet
family is built by fixing the frequency parameter'’”. Within a
redundant dictionary, there are more free parameters than
with an orthogonal wavelet basis. In particular, the amount
of oscillation within an atom is free to change, allowing de-
scribing both transient waves and sustained oscillations. Sec-
ondly, we do 3D source reconstruction to identify where the
signals originate. Source localization can help improve the
understanding of the representation, and it can directly give
information regarding the observed phenomena from the
sources within the cortex. The coherence between the source
locations and the prior knowledge gives additional evidence
in this regard.

4 Conclusion

In this paper, an MMP algorithm is described to extract
single-trial MEG evoked signals. From our results, we think
that MMP atomic decomposition of the multichannel MEG
can reliably extract meaningful and significant physiological
activities, although this does not ensure that the results are
in accord with the physical sources that generate the signals.
Nevertheless, the proposed approach done before inverse
modeling is an adequate way to noninvasively estimate brain
activity to external stimuli. Further studies should use this
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algorithm to observe the trial-to-trial variation during long
tests.
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