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Abstract: The double degrees-of-freedom ( DOFs) parallel
model is adopted to analyze static vertical human-induced
vibration with the finite element analysis (FEA) method. In the
first-order symmetric vibration mode, the periods of the spring-
mass model gradually decrease with the increase in K, and K,,
but they are always greater than the period of the add-on mass
model. Meanwhile, the periods of the spring-mass model
decrease with the decrease in m, and m,, but they are always
greater than the period of the hollow bridge model. Since the
human’s two degrees-of-freedom vibrate in the same direction as
that of the bridge mid-span, the existence of human’s rigidity
leads to the reduction in the rigidity of the spring-mass model.
In the second-order symmetric vibration mode, the changes of
rigidity K, and mass m, result in the disappearance or occurrence
of some vibration modes. It can be concluded that compared
with the spring-mass model, the results of the add-on mass
model lean to lack of safety to the structure; besides, the DOF
with a smaller ratio of mass to rigidity plays the chief role in the
vibration of the structure.
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n recent years, excessive vibrations from high traffic on
I steel structure pedestrian bridges have become increas-
ingly evident''™ . When everyone on the structure is in the
posture of sitting, standing or other similar conditions, the
loading effect on the structure is static. For most designs of
structures, static loading is empirically treated to be uni-
formly-distributed. Even taking into account the dynamic
effects of the static loading, the pedestrian loading is simply
treated as an add-on mass of the structure”’. Though the
add-on mass model is widely accepted and incorporated into
the design specifications in many countries, it is quite obvi-
ous that this model will reduce the natural frequency of the
structure vibration, while some other model parameters,
such as rigidity and damping, do not change'”. However,
the actual measurements indicate that it is not the case. Stat-
ic loading on the structure can not only change the natural
frequency of the structure vibration, but also alter the rigidi-
ty of the structure due to the intrinsic rigidity of human
bodies"™ . Therefore, an objective method for the static pe-
destrian loading, the spring-mass model, should be applied
to analyze the original structure.

For the purpose of simplicity, this paper only studies the
one-man model. For the bridge structure, static pedestrians
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are normally in the posture of standing. Thus, it is necessa-
ry to build a reasonable and workable vertical vibration line-
ar model with a man in a standing posture before conducting

the study of the vertical vibration on a pedestrian bridge'® .

1 Mechanical Model of Static Human-Induced
Vibration

The double degrees-of-freedom parallel model, as shown
in Fig. 1, has less interference between the two degrees of
freedom. It is simple, and it can facilitate the implementa-
tion of the mechanical model. This model is also recom-
mended by the International Organization for Standardization
and is thus adopted to research the vertical human-induced
vibration in this paper. Based on the physical test on a hu-
man body’s vibration and using the parameter averaging
method, we obtain the human body’s parameters as shown
in Tab. 1", In this table, K, is the rigidity of DOF 1; m,
is the mass of DOF 1; K, is the rigidity of DOF 2; m, is the
mass of DOF 2; m, is the mass of the static part of the hu-
man body.

My

F(t)
Fig.1 Double DOFs parallel model

Tab.1 Human body parameters obtained by parameter aver-
aging method

Mean Standard Minimal Maximal
Parameter .

“ deviation ¢ value value

K,/(KN - m™") 32.1 6.0 22.6 47.5
m,/kg 28.6 4.7 21.2 40.4
K,/(kN - m~") 80.5 20.5 36.9 123.6
my/kg 21.9 6.6 9.2 43.7
my/kg 8.6 3.5 4.6 17.1

2  Example on Calculation of Human-Induced
Vibration for Pedestrian Bridge

2.1 Model establishment

Fig. 2 is the finite element analysis model of a pedestrian
bridge. The bridge has a span of 30 m with a vector height
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of 3 m and belongs to a plane truss system. The vertical vi-
bration periods are illustrated in Tab. 2.

According to the range of variable parameters in Tab. 1,
we can classify these parameters into several groups ( see
Tab.3) and input them into the FEA bridge model. Since
m, is completely connected to the bridge model in a rigid
manner without independent freedom, m, is not included as
a variable.

Fig.2 FEA model of a pedestrian bridge

Tab.2 Structural dynamic properties

Natural period/s Vibration mode
0.280 34

0. 109 05

First-order symmetry

Second-order symmetry

Tab.3 Man’s model parameter values

K, /(KN -m™") m,/kg K,/(kKN - m™") m,/kg
22 21 37 9.18
27 25 57 16. 08
32 29 77 22.98
37 33 97 29. 88
42 37 117 36.78
47 41 137 43.68

(a)

2.2 Calculation, analysis and comparison

Compared with the original shape of the bridge model( see
Fig.3(a)), there are three kinds of vibration shapes in each
mode. The first is the two DOFs of the human body vibra-
ting in the same direction as the structure; the second is the
two DOFs of the human body vibrating in the reverse direc-
tion to the structure; and the third vibration shape represents
the one DOF vibrating in the same direction as the structure
and the other DOF vibrating in the reverse direction to it.
Both the first-order symmetry vibration modes ( see Fig. 3
(b)) and the second-order ones( see Fig.3(c)) include the
three kinds of vibration shapes mentioned above. However,
whether the three kinds will appear in the spring-mass model
depends upon the mass, rigidity and other parameters of the
double DOFs parallel model and the bridge model.

According to the finite element analysis, the changes in
parameters K,, K,, m,, m, in the double DOFs parallel
model will lead to the changes in the vibration mode and the
vibration period in the spring-mass model. By investigating
the trend of curves in Fig. 4 to Fig. 7, we can sum up the
following rules.

The periods in Fig. 4(a) and Fig.5(a) gradually decrease
with the increase in K, and K,, but they are always greater
than the period of the add-on mass mode ( That is
0.287 98 s). Meanwhile, the curve becomes flatter with
the increase in rigidity since the model approaches the add-
on mass model when K, and K, tend to infinity. Further-
more, since the human’s two degrees-of-freedom vibrate in
the same direction as that of the bridge mid-span, the exist-
ence of human’s rigidity leads to the reduction in the rigidity
of the spring-mass model; thus the periods are always

Fig.3 Vibration mode of spring-mass model. (a) Original shape; (b) First-order symmetry vibration mode; (c) Second-order sym-

metry vibration mode
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Fig.4 Curves of period vs. K,. (a) First-order symmetric vibration mode ( both same); (b) Second-order symmetric vibration mode

(both reverse); (c) Second-order symmetric vibration mode (one same, one reverse)



584

Ding Jianming, Chen Juanting, Wang Baoqian, and Xu Xiuli

0.2902 - 0.110 0.096
2 B 0.092 -
» L » 0.108 »
%0.2896 2 20.090
30.2894 20.107 [ R
50.2892 1 5 £0.088
A A 0.106 [ ~
0.2890 | 0.086 -
0.2888 0.105 0.084
) 2 1 1 ] 0. 104 1 1 1 1 | 0‘ 082 1 | 1 1 ]
0.288 630 60 9 120 150 30 40 50 60 70 80 90 100 110 120 130 140
K,/(kN +m™1) K,/(kN+-m™1!) Ky,/(kN+-m™!)
(a) (b) (¢)
K/(kN>m™'), ——22; ——27; —=—32; —%=37; —%—42; —=— 47
Fig.5 Curves of period vs. K,. (a) First-order symmetric vibration mode ( both same); (b) Second-order symmetric vibration mode
(both reverse); (c) Second-order symmetric vibration mode (one same, one reverse)
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Fig.6 Curves of period vs. m,. (a) First-order symmetric vibration mode ( both same); (b) Second-order symmetric vibration mode
(one same, one reverse); (c) Second-order symmetric vibration mode (both reverse)
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Fig.7 Curves of period vs. m,. (a) First-order symmetric vibration mode ( both same); (b) Second-order symmetric vibration mode
(one same, one reverse); (c) Second-order symmetric vibration mode (both reverse)

greater than those of the add-on mass model. As a result,
all the curves in Fig.4(a) and Fig. 5(a) are above the as-
ymptote where the period is 0. 287 98 s. Figs.4(b) and (c)
and Figs. 5(b) and (c¢) demonstrate the change in the period
of the second-order symmetric vibration mode with the
change in human’s rigidity. According to Fig. 5, with the
increase in rigidity K,, not only does the period of the sec-
ond-order symmetric vibration mode drop rapidly, but also
the vibration mode changes; i.e., from the second vibration
shape to the third one (see Fig.3(c)), which exactly dem-
onstrates that the change in rigidity results in the disappear-
ance or occurrence of some vibration modes. On the other
hand, the increase in K, may have little influence on the pe-
riod of the second-order symmetric vibration mode.

The periods in Fig. 6(a) and Fig. 7(a) decrease with the

decrease in m, and m,, but they are always greater than the
period of the hollow bridge model ( That is 0.280 34 s).
Meanwhile, it can be seen that the curve becomes flatter with
the decrease in mass since the model is converted to the hol-
low model when m, and m, tend to zero. Figs.6(b) and (c)
and Figs.7(b) and (c) demonstrate the change of period of
the second-order symmetric vibration mode with the change
in the mass of the human. According to Fig.7, with the in-
crease in mass m,, not only does the period of the second-order
symmetric vibration mode increases, but also the vibration
mode changes; i.e., from one same, one reverse to both re-
verse, which again demonstrates that the change in the mass
will result in the disappearance or occurrence of some vibration
modes. Furthermore, the increase in m, may increase the peri-
od of the second-order symmetric vibration mode.
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3 Conclusion and Future Work

Compared with the add-on mass model, the spring-mass
model can more precisely illustrate the influence of the hu-
man body on the structure. The period of the spring-mass
model is greater than that of the add-on mass model, so the
results of the add-on mass model will lean to lack of safety
for the structure. When the double DOFs parallel model is
adopted to simulate the model of the static human body, the
independent movement of two DOFs will result in the com-
plication of the research, but the DOF with a smaller ratio
of mass to rigidity will play a chief role in the vibration of
the structure.

This paper only involves the activity of one man, while
the effect of a crowd is not considered. The effect of a
crowd is not just the simple sum of multiple individuals,
which may require the involvement of probability theory for
further expansion in the future' . Also, during the analysis
of the structure, the majority of attention is paid to the
effects of one man on the structure. It would be interesting
to consider the effect of structural vibration on human’s

body to reflect the people-oriented design philosophy'”’.
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