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Abstract: This paper aims at successive structural damage
detection of long-span bridges under changing temperature
conditions. First, the frequency-temperature correlation models
of bridges are formulated by means of artificial neural network
techniques to eliminate the temperature effects on the measured
modal frequencies. Then, the measured modal frequencies
under various temperatures are normalized to a reference
temperature, based on which the auto-associative network is
trained to monitor signal damage occurrences by means of
neural-network-based novelty detection techniques. The
effectiveness of the proposed approach is examined in the
Runyang Suspension Bridge using 236-day health monitoring
data. The results reveal that the seasonal change of environmental
temperature accounts for variations in the measured modal
frequencies with averaged variances of 2. 0%. And the
approach exhibits good capability for detecting the damage-
induced 0. 1% variance of modal frequencies and it is suitable
for online condition monitoring of suspension bridges.
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ver the past several decades, a significant research ef-
fort has focused on the health monitoring and condition
assessment of long-span bridges'™. How to explain the
health condition of the bridge structure according to the col-
lected structural responses remains a great challenge in the
civil engineering community. It is well known that bridge
structures are subject to varying environmental conditions
such as traffic load and environmental temperature. These
environmental effects will cause changes in the structural
damage detection parameters which may mask the changes
caused by structural damage. Therefore, for reliable per-
formance of structural health monitoring techniques for long-
span bridges, it is paramount to characterize normal varia-
bilities of damage detection parameters due to environmental
effects and discriminate such normal variabilities from ab-
normal changes in damage detection parameters caused by
structural damage"”’ .
Considerable research efforts have been devoted to inves-
tigating the influences of environmental conditions on modal
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frequencies of bridges™ ™. Most of these investigations indi-
cate that temperature is the most significant environmental
effect affecting bridge modal properties. For instance, Ab-
del Wahab and De Roeck!” conducted two dynamic tests for
a prestressed concrete bridge in the spring and in the winter,
respectively, and observed an increase of 4% to 5% in mo-
dal frequencies with the decrease in temperature. Cornwell
et al. ™' observed the variability of modal frequencies by up
to 6% over a 24-hour period on the Alamosa Canyon
Bridge. Ni et al. " observed that the normal environmental
change of the Ting Kau Bridge accounted for variations in
modal frequencies with variances from 0.2% to 1.52% for
the first ten modes. Therefore, it is necessary to develop an
effective scheme for online health monitoring of long-span
bridges which should account for the temperature influence
on modal frequencies efficiently.

In this paper, a novel damage detection technique based
on neural networks is proposed for long-span suspension
bridges using long-term monitoring data. The proposed
method includes three steps: 1) Construction of the seasonal
relationship of frequency-temperature; 2) Neural-network-
based modeling of the seasonal relationship of frequency-
temperature; 3) Neural-network-based classification of the
measured changes of modal frequencies due to environmen-
tal conditions and structural damage. The feasibility of the
proposed method is demonstrated using 236-day health mo-
nitoring data of the Runyang Suspension Bridge.

1 Measurement of Modal Frequencies of Runyang
Suspension Bridge

The subject of this study is the Runyang Suspension
Bridge, which is a single-span steel suspension bridge that
crosses the Yangtse River, along the highway between
Zhenjiang and Yangzhou in China. The main span of the
bridge is 1 490 m. The health monitoring system for the
Runyang Suspension Bridge has been established to real-
time monitor the responses of the bridge under various kinds
of environment actions and mobile loads by application of
modern techniques in sensing, testing, computing and net-
work communication”™” . A total of 27 uni-axial servo type
accelerometers have been installed at the nine sections of the
bridge deck to measure the dynamic characteristics of the
bridge. The nine sections are equidistantly located in the
main span. Likewise, a total of 27 temperature sensors have
been installed at the sections of the bridge deck to measure
the temperature of steel box girders. The sampling rates for
acceleration and temperature are 20 and 1 Hz, respectively.

The 236-day monitoring data (from January to October of
the year 2006) are used in this study. With the acceleration
measurement data, the modal frequencies of the six vibra-
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tion modes are identified at 10-min intervals. Fig. 1 shows
the identified frequency sequences of the 5th mode on a typ-
ical day for the Runyang Suspension Bridge. On the whole,
the measured modal frequencies have the minimum at ap-
proximately 14: 00 and reach the maximum at approximately
6:00. Therefore, the measured modal frequencies can effec-
tively reflect the fluctuation characteristics of ambient tem-
perature in one day. In addition, it can be observed from
Fig. 1 that the influences of ambient load on the measured
frequencies cause instantaneous changes because of vehicle
loading and wind loading.
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Fig.1 Measured frequency sequences of the Sth symmetric
vertical mode

The seasonal correlation analysis is further applied to
eliminate the random variations due to ambient load, name-
ly, using the daily averaged values to construct the seasonal
relationship between frequency and temperature. The daily
averaged frequency-temperature scatter diagrams of vibration
modes 1, 2, 5 and 6 are presented in Fig.2. It can be seen
that the measured modal frequencies of higher vibration
modes have remarkable seasonal correlations with the tem-
perature. Tab. 1 summarizes the statistical information of
modal frequencies from the 236-day data in 2006. It is ob-
served that the minimum variance, maximum variance and
mean variance are 0. 649%, 2. 186% and 1.403% , respec-
tively.

Tab.1 Seasonal change of modal frequencies

Mode  Nature of mode Maximum/Hz Minimum/Hz Variance/%

1 Ist symmetric 0.124 1 0.1233 0. 649
vertical mode

p 2ndanti-symmetric g, 0.1792 1116
vertical mode

3 Srdantisymmetric 0, 0.2780 1. 151
vertical mode

4 4th symmetric 0.344 4 0.339 1 1.563
vertical mode

5 Athantisymmetric ) p0q 4 0.375 1 2.186
vertical mode

6 Sth symmetric 0.4589 0.4510 1.752

vertical mode

2 Modeling of Frequency-Temperature Correla-
tions

2.1 Neural network topology

As temperature is the critical source causing the variability
in measured modal frequencies, it is necessary to remove
the temperature effects on modal frequencies before the mea-
surement data are utilized for structural damage detection.

0.1240
o 0.1238f c
=
B
§ 0.1236
o
£
=
0.1234F
0.123 2 ' ' ' ' '
10 0 10 20 30 40
/°C
(a)
0.182
o 0.181f .
3 .
§~ o..:'.’.."o
£ 0.180 R I -
. v "5 ‘.#.0
0. 179 1 1 1 1 |
10 0 10 20 30 40
7/C
(b)
0.385
RN
o 0.382F 4,0
= Lok .::.'.
> S
£ 0.379f "'.,k.
g 78
<) P
0.376 s
D oo
0373 1 1 1 1 |
100 10 20 30 40
/C
(e)
0.460 -
0.458F  "w' .,
g,
= ¥
3, 04561 i,
5 ‘.."
£ 0.454 ‘
g K
<3} .!ﬁ' .
0.452 %?'i.,:.
0.450 : ' ' , '
-10 0 10 20 30 40
7/C

(d)

Fig.2 Seasonal correlations of temperature and frequency.
(a) Mode 1; (b) Mode 2; (c¢) Mode 5; (d) Mode 6

The artificial neural network ( ANN) technique is applied
herein for the modeling of frequency-temperature correla-
tions. In this work, feed-forward back-propagation ( BP)
neural networks are configured for modeling the seasonal
correlations of the frequency-temperature. The input to the
network is daily-averaged temperature and the output is dai-
ly-averaged modal frequency for each vibration mode. Since
27 temperature sensors have been selected to provide meas-
urement data, the number of input nodes is set as 27. The
output layer has only one node which represents the frequen-
cy at a specific vibration mode. Through trial-and-error,
three-layer neural networks with a node structure of 27-15-1
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are found to be able to achieve satisfactory prediction per-
formance and are therefore adopted in this study. The acti-
vation function is taken as the sigmoid function between the
input and the hidden layers and as a linear function between
the hidden and output layers.

2.2 Modeling and results

In order to evaluate both the reproduction and generaliza-
tion capabilities of the configured neural networks, the 196-
day monitoring data ( training samples) are discontinuously
extracted from the total 236-day data to train the neural net-
work model, and the other 40-day monitoring data ( valida-
tion samples) are used to test the prediction capability of the
neural network model. In this study, four vibration modes
(mode 3 to mode 6 in Tab. 1) are employed in the seasonal
correlation modeling. For each vibration mode, the training
samples of both daily-averaged temperature and frequency
are used to train the neural network. Then the training tem-
perature samples are again presented as input into the trained
network to generate frequency outputs which are compared
with the target outputs (training frequency samples) to eval-
uate the reproduction ( simulation) capability. Similarly, the
validation temperature samples that are not used in the train-
ing are fed into the trained network to generate frequency
outputs which are compared with the expected outputs ( vali-
dation frequency samples) to evaluate the generalization
(prediction) capability of the neural network model.

Fig.3 and Fig. 4 show comparisons between the measured
modal frequencies and those generated by the neural network
models for training and validation data, respectively. Both
the reproduction and generalization capabilities of the formu-
lated neural network models are validated. Tab.2 summari-
zes the means and standard deviations of residuals of the re-
produced frequencies associated with the training samples
and the predicted frequencies corresponding to the testing
samples. It is observed that the neural networks exhibit bet-
ter reproduction ( simulation) capability than the generaliza-
tion (prediction) capability, but the discrepancy is insignifi-
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Fig.3 Comparison of measured and ANN reproduction re-
sults of the 6th vibration mode
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Fig.4 Comparison of measured and ANN prediction results
of the 6th vibration mode

cant. On the whole, the developed neural network models
exhibit good capabilities for modeling the seasonal correla-
tions of frequency-temperature so that the temperature-
caused variability of the modal frequencies can be effective-
ly quantified.

Tab.2 Statistics of residuals of ANN-generated modal frequencies

Hz

Reproduced frequencies Predicted frequencies

Mode

Mean Standard deviation Mean Standard deviation
3 -3.9084x107" 8.5533x107° 3.0188 x107> 8.7331x107°
4 -3.1721 %1071 1.1645x107* 5.0389 x107> 1.2882x107*
5 -4.2766x10710 1.2445x107* 2.7282x107° 1.6784 x107*
6 -5.6078x10710 1.4599 x107* 5.0357 x107° 1.4938 x10~*

3 Damage Detection by Novelty Detection Tech-
nique
3.1 Removal of temperature effect

Before the measurement modal frequencies are used for
structural damage detection, the temperature effect on the
measured modal frequencies should be removed. It is
achieved by normalizing all the measured frequencies to a
set of fixed reference temperatures based on the established
neural models. In this study, the reference temperature for
each temperature measurement point is taken as the average
of the 236-day measured temperatures. By feeding the set of
reference temperatures into the neural networks, a nominal
frequency f, is obtained for each vibration mode. Likewise,
by feeding the temperature measurement data into the neural
network, a temperature induced frequency f, is predicted.
Then the normalized frequency after removing the tempera-
ture effect can be obtained by

f=fa-(i=f) (1)

where f is the normalized modal frequency; f,, is the meas-
ured modal frequency. It should be noted that for a specific
temperature measurement point, a fixed value of the refer-
ence temperature should be used to normalize the measured
modal frequencies obtained at different seasons.

3.2 Definition of novelty index

A neural-network-based novel detection technique is fur-
ther employed for damage detection. A novel detector can
be realized by using an auto-associative memory neural net-
work that is configured as a multi-layer perceptron with a
bottleneck hidden layer''". The auto-associative network is
trained using a series of measurement data from the healthy
structure as both the input and the output. After the network
is trained, the input data presented on training is fed again
into the trained network to yield a set of output data. A nov-
elty index can be defined as the difference between the input
and output vectors using some form of distance function. In
the testing phase, a new series of measurement data ob-
tained from an unknown structure ( damaged or undamaged)
is passed into the above network to form a novelty index se-
quence of the testing phase. The structural abnormal condi-
tion can be indicated if this sequence deviates from the nov-
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elty index sequence of the training phase.

The normalized modal frequencies are used to construct
the novelty index. In the training phase, a series of meas-
ured modal frequencies of the healthy structure is used as in-
put fed into the auto-associative neural network. The input
vectors are four vibration modes ( mode 3 to mode 6 in Tab.
1) as follows:

f=10 f f Y (2)
The output of the network is set as

y.=(f -m)a+m  i=1,2,3,4 (3)

where « is a given positive constant and is taken as 3 in the
present study; m, is the mean of the i-th element f; of the in-
put vector f over the training data. With the input training
vector f and the output vector y, the neural network is
trained using the back-propagation algorithm.

After performing the training, the input vector f presented
on training is fed again into the trained network to yield out-
put vector j, and the novelty index sequence for the training
phase is obtained using the Euclidean distance as

A = lly-=J (4)

In the testing phase, a new series of data (f, = {f,,, fa.
foi» ful") collected from the same structure ( damaged or un-
damaged) is fed in to the above trained network to yield
output §,. The corresponding novelty index for the test set is
then obtained by

A(yl) = Hyl_ﬁl ” (5)
where y, is the vector. Its i-th element can be written as

Vo=(fyi—-m)a+m, i=1,2,3,4 (6)

If the testing novelty index sequence deviates from the
training novelty index sequence, the occurrence of structural
damage can be indicated; if the two sequences are indistin-
guishable, no damage is signaled.

3.3 Damage cases and identification results

Auto-associative neural networks are developed with their
input vectors being the measured modal frequencies. The
196-day monitoring data and the 40-day monitoring data
used in section 2 are also employed to train and test the au-
to-associative neural networks. Neural networks are four-
layer feed-forward perceptrons with two “bottleneck” inter-
nal layers. The activation functions are taken as the tan-sig-
moid function between the second layer and the third layer,
and the linear transfer function between the input layer and
the second layer and between the third layer and the output
layer. Fig.5 shows the novelty indices in both training and
testing phases for modal frequency. It can be seen that the
novelty index sequence in the testing and training phases are
indistinguishable.

In order to investigate the damage detectability, the mo-
dal frequencies of the damaged structure are simulated by
subtracting a value from the measured modal frequencies of
the latter 40 testing samples:

fi=fi-¢f; (7)

where f is the measured modal frequency of the i-th vibra-
tion mode; f; is the simulated modal frequency of the dam-
aged structure; & denotes the damage extent; in the latter
examples ¢ is chosen to be 0. 1% ; f: is the annual average
of the measured modal frequency of the i-th vibration mode.
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Fig.5 Novelty index sequences of healthy structure

Fig. 6 shows the novelty index sequences with respect to
the former 196 samples of the intact structure and the latter
40 samples of the damaged structure. It can be seen that the
latter 40 samples have an obvious shift with regards to the
centerline, which indicates the existence of the damage. It
is found that the seasonal change of environmental tempera-
ture accounts for the variation in modal frequencies with an
averaged variance of 2.0%, while the novelty detection
method can detect the damage-induced 0. 1% variances of
the modal frequencies.
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Fig.6 Novelty index sequences of damaged structure

4 Conclusion

This paper focuses on the successive detection of the oc-
currence of structural damage in the Runyang Suspension
Bridge using neural network techniques. The modal fre-
quencies of the Runyang Suspension Bridge are identified
from the measured dynamic responses under ambient excita-
tions. The seasonal correlation analysis is further applied to
eliminate the random variations of measured modal frequen-
cies due to ambient loadings, namely using the daily aver-
aged values to construct the seasonal relationship of frequen-
cy-temperature. Results reveal that measured modal fre-
quencies have remarkable seasonal correlations with the tem-
perature. The seasonal change of environmental temperature
accounts for variations in the measured modal frequencies
with an averaged variance of 2. 0% . Then the seasonal cor-
relation models of frequency-temperatures are formulated
using artificial neural network techniques. Making use of
the developed models, the measured modal frequencies at
different temperatures are then normalized to a reference
temperature to remove the temperature effects.

The normalized modal frequencies are utilized for struc-
tural damage detection using a neural-network-based novel
detection technique. The auto-associative network is trained



590

Ding Youliang, Li Aiqun, and Geng Fangfang

as a novel detector to signal damage occurrence. Results re-
veal that the proposed method can effectively eliminate tem-
perature complications from the time series of modal fre-
quencies and exhibit good capability for detecting the dam-
age-induced 0. 1% variance of modal frequencies.
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