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Finite element analysis of spatial curved beam in large deformation
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Abstract: For the purpose of carrying out the large deformation
finite element analysis of spatial curved beams, the total
Lagrangian (TL) and the updated Lagrangian (UL) incremental
formulations for arbitrary spatial curved beam elements are
established with displacement vector interpolation, which is
improved from component interpolation of the straight beam
displacement. A strategy of replacing the actual curve with the
isoparametric curve is used to expand the applications of the UL
formulation. The examples indicate that the process of
establishing the curved beam element is correct, and the
accuracy with the curved beam element is obviously higher than
that with the straight beam element. Generally, the same level
of computational accuracy can be achieved with 1/5 as many
curved beam elements as otherwise with straight beam elements.
Key words: spatial curved beams; total Lagrangian incremental
formulation; updated Lagrangian incremental formulation;
geometrical nonlinearity; isoparametric curve

he spatial curved beam is a common form of structures
T and components in engineering practice, such as curve
bridges, arch bridges, and so on. An intuitionistic analysis
would suggest that the mechanical behavior of curved beams
must be far more complex than that of straight beams due to
the effect of considerable initial curvature. Ojalvo et al. '™
pointed out that the geometric relationships of spatial curved
beams are characterized by complex coupling. In terms of
the equilibrium for curved beams, Vlasov et al. BT also
found the wordy equilibrium relationships of various internal
forces on micro sections of curved beams. Moreover, the e-
quilibrium equations established by the above scholars are
only suitable for planar curved beams. Analytical research
on spatial curved beams appears to be stagnant.

As a result of these difficulties, the finite element study
for the spatial curved beams is still in an exploratory stage.
In order to meet computational requirements in engineering
practice, the curved beam is replaced by a series of straight
beams to approximately carry out the structural analysis at
the cost of computational efficiency.

In this paper, based on the studies of the geometrical rela-
tionships of arbitrary spatial curved beams, the equilibrium
equation, and the nonlinear virtual work equation, we es-
tablish finite element formulations for spatial curved beams
in large deformation, and test the validation of the formula-
tions and the computational accuracy of the element by ap-
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plying several examples.
1 Displacement Interpolation

The coordinate system of the curved beam section under
the Kirchhoff hypothesis is described in Fig. 1. Where e, are
three orthogonal unit base vectors of the fixed Cartesian co-
ordinate system C,; e, are three orthogonal unit covariant
base vectors of the centroidal principal axis coordinate sys-
tem CR; e, change along with the beam axes, but remain
identical and orthogonal; and x' is the curve length between
the beginning of the beam and the centroid of section. e,
change along with coordinates x', and their derivatives with
respect to x' follow the rule:

0 K - K,

> T —_%_| _x =

¢, =Ke, k=K = K; 0 K, @)
K, -k, 0

where k, =0 +a,, K, =KSin a, Kk, =kcos a; €, is the dif-
ferential coefficient of variable &, with respect to x'; & is the
initial curvature; v is the initial torsion; and « is the
section’s initial angle of torsion.
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Fig.1 Geometrical description for spatial curved beam

1.1 Displacement field

Due to the uncoupling of deformations, the field displace-
ment components of the straight beam element can be ob-
tained by the components interpolation of the nodal point
displacement. However, the curved beam does not have
such advantages, and the interpolation of the displacement
vector needs to be carried out, taking coupling of curved
beam deformation into consideration. Imitating the straight
beam element, the cubic Hermitian polynomials are used for
displacement interpolation, while the Lagrangian polynomi-
als are used for torsion angle interpolation. Their specific
expressions are

Hy =1-368+2866, H, = (£ -286+ &8O L
H, =386 -28¢¢, H, = (&6 -8 L

L=1-¢ L =¢ ¢=x'/L
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The specific expressions for the displacement field are

(w'e)|, =H (u'e)|, , +Hy(u'e) |,
+H3(”‘éi)‘ Y=L +H4(uléi),1‘ Y=L
(giéi) ¥ :Ll(oiéi) ,x‘:o+L2(9iéi) x=L

where (u'e,)| .is the displacement vector for section x' and
uw'(i=1,2,3) are the displacement components in e, direc-
tion. (u'e)| ., (u'e) | ., (u'e)| ., and (u'e) |._,
represent the displacement vectors and their derivative vec-
tors of the starting point and the ending point of the beam,
respectively. (6'¢,)| ._, and (@'e,)| ._, stand for the rota-
tional angle vectors of the starting point and the ending point
of the beam, and 6' (i =1, 2, 3) are the rotational angle
components in e, direction. L is the total curve length.

Rewriting (u'e,) ., and considering Eq. (1), the following
equation can be obtained,

(u'e) , =(u', +u'K)e, =w'g,

o =0, o =-0
Therefore,
(u'e)| . =H (u'e)| . ,+H(w'e)| ., +
H,(u'e)| ., +H/(w'e)|, _, (2)
(eléi) % :Ll(gléi) x‘:0+L2(01éi) Y=L

Eq. (2) is formally consistent with the straight beam dis-
placement interpolation formula, but it is vectorial.

Obviously, Eq. (2) is not applicable due to the fact that it
contains (é,)| ._, and (é,)| ,_,, which should be eliminated
by means of conversion, indicating (é,)| ._, and (ée,)

x'=L
with e, and then with e,.
(@), ="Ale, ="AiC"A) (@), 3)
(@) ="Aje; ="AiCA) (2],
Wherex"/i'ﬁ is the relational matrix between (é€,)| . and e; on
x' section.
(e) X =X71{: €, €= (X‘Z/L) 71(‘}[) X' (4)

XI/NV,: is determined by the specific curve, and the expres-
sion x?l’,i of the isoperimetric curve will be deduced later in

this paper. ‘71'1: has the following property regardless of the
kinds of curves:

X' _T kx' > j
A =K AL
because

A e,

_ s _Fk s _ kR
/_ei,l_Ki ek_Ki Akej

After conversion, Eq.(2) can be written as

(uiéi)

o =(H, MII{OZJIC + szllfo/jj/.c + quéLZ]L +
H,w) A ("AD"(e)] ,
o= (L0 AL+ L0 A) (T AD (@)

(0'e,)

1
X

By eliminating (é,)| . and considering the angle of torsion
interpolation only for the rotational angle, we obtain

W= Hu NN + Hyo A AT +
H "ACA)T 4 Hyo A AT
0' =L,0"" A" A" + Lo AL (AT

(5)

Eq. (5) is the tensor expression, which is not suitable for
coding. The corresponding matrix expression is given. The
displacement column matrix of x' section is written as

us=[u" 01, u=[u" & 1"

The purpose of interpolation is to indicate u with the ele-
ment nodal point displacement matrix u,. Based on the in-
ferential result above, ug can be written as

N :NASATTmue (6)
wo=[u) 0 u, u 6 u,]
N_[N, 0 N, N, 0 N4]
“lo L, 0 0 L 0
N[:diag(N,. N, N,
Ag=diag("A "A, A A A, “A)
‘AT 0 0 0
0 OZ*T 0 0
0 OZ#T 0 0
A=y 0 ‘AT o0
0 0 0 L'/“*T
0 0 0 LZ#T
I 0 0 0 0 0
w, I'' ' 0 0 0
T =
*“ 10 0 0 I 0 0
0 0 0 o I" I
AL 0 AT -A?
A=A 0 A R
AL 0 A -TAD
0 “A “A* A
AY=l0 A} A AL
0 A, A2 Al
0 0 0 1 0 0 0
0 -k R .o 0o o] ., |1
@@=l 0 o [T =lo o 17710
0 0 0 0 -1 0 0

where * A, is the first line of *A.
Furthermore, the sectional independent displacement de-
rivative matrix dg can be written as

0] =A,ug =A,NA,T, u, =Bu,
(7

I O, O, 0 0 ]T

A=1o o 0 1 0O,
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i i~
1.2 K, and * A} expressions of isoparametric curve

The analyses described above can be applied to all kinds
of curved beams. It is important to carefully consider how
to calculate K’ and X?lf:. These two quantities are determined
by curves. In the following, we will discuss the 7(’,”71{ cal-
culation of isoparametric curves. The original "71’,: expres-
sion cannot be used after deformation in the case with the
updated Lagrangian formulation.

In order to solve this problem, a strategy similar to the
isoparametric element method is used. With the aid of cubic
Hermitian polynomials, the original curve expression is sub-
stituted approximately with the polynomial constituted by
nodal coordinates Xii (j=1,2) on C; and its derivative with
respect to x'

XiiHi*Y; j=1,2,3,4
Y =X, Yi=X,, Yi=X), Yi=X},
Hi =1-300+20{, Hy =({-2{{ +{{DL
Hy =300 =20, H =L -{OL
where X' is the coordinate of the original curve point on C;.

The Hermitian polynomials parameter / whose value ranges
from 0 to 1 should be noted as {#x'/L. This is because

i * i 1 i i * i * i
dX'=H, Y d{, dx'=./dX'dX =d{/H, Y H,, Y,

And generally,
all the points.
So calculating the derivatives is less convenient.

H_:g Y. H, . Y, =L does not hold true at

H =H [, H,=H_ (.l +H {,

H:m :Hj,*;;g g,lf,]él +3H;gg g,]{,ll +H;; <
1 s, s s

5,1:73 5,11:_272,’ g,m: - “

Js sssAfs  2ssys
s=H; Y H_ Y, s, =2H Y H_Y,
S =2(Hyy YiHy Yo+ Hi Y H 1))

Furthermore, considering the Lagrange interpolation of
the initial angle of torsion, the expressions of the curvature,
the torsion and * A’ are given directly below:

* 1 * 2 * 3
| H;, Y H,Y; H;, Y,

—~ * 1 * 2 * 3
v= TRk H, Y H,Y H,Y
* 1 # 2 * 3

H,m Y] Hj.lll Y, Hj,]]l Y]

ko=0+L o, & =ksin(L] @), & =keos(L a))

XZ; ZH.:I YJ’
YAL=[cos(L] a)H/, Y| +

sin(L,* az)H,:.l Hn*.ll Yin Yﬁ ‘5‘,/ki]/’~<

YAl =[ -sin(L] a)H;

Jon Y;+
cos(L a)H, H., Y, Y, &,]/k

m ~n

where ¢, is the Eddington permutation tensor.

2 Large Deformation Finite Element Incremental
Formulations

The arbitrary spatial curved beam in the total form is
jadg(zg +Zy) Fydx' = faug Z, qydx' +5u. Z'F, (8)
L L
where Z, Z . and Z are the coefficient matrices that do not

contain the unknown quantity. The specific expressions of
these matrices are

. -k+C,C, I+CIC, 0 0 0
S_[ -kC, C, -kC, C, -kC, 03]
I 00000 |
I 0 01 0000
z=[c, ¢l %=l0 0 0 1 0 0’0*‘{8}
000010

o

o

(=)
(e
(e
o

-k, 0 ,sz[

k0 -k

=]
S
|
—_
-

01 0

where Z,, is the coefficient matrix related to the section dis-
placement,

Zyo=[Zyd;, 0 0 0 Z,d, Z,d,]

Zﬁz(i =1, 2, 3)are irrelevant with regards to the unknown
quantity and they must satisfy

Zy+x°Z, -x'Z,=C"QC

I 0 o0 o0 o
o I 0 0 O
c={0 0 I 0 O
c ¢, 0 C, o0
0 C ¢C, 0
-kk ¢k 0 -krQ, 0
g’ I 0 -2kQ, 0
0= 0 -0 0
0 0
0
0o x -x
Q,=| - 0 0 |, g =1+xk, -xk,
x’ 0 0

where ¢, is the load matrix, and F, is the element nodal
force matrix. Fy is the section internal force matrix and it
can be expressed as

FS:[F] Fz F} M[ M, M_s]T

The relationship between F and the section displace-
ment, also known as the constitutive relationship, is

1
Fy =D Zd, +DZ,(d))dy 9)
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D¢ and D, are determined by the material property and the
section property.

[EA 0 0 0 ES -ES]
00 0 0 0
0 0 0 0
D = Gr o 0
E,’ -EJ°
i E,l’

The specific elements of D, and D are consistent, except
that GI’ =0.

Eq. (8) is in the total form, and it needs to be rewritten
into an incremental form for solving nonlinear problems.
There are two kinds of incremental formulations: the total
Lagrangian formulation and the updated Lagrangian formu-
lation.

2.1 TL formulation

For the TL incremented formulation, when the element
node has experienced an incremental displacement Au, rela-
tive to the previous time, the independent displacement de-
rivative matrix d of x' section, the section internal force F
and the nodal force F, will have an increment,

d,=dg, +Ad,, F,=Fy, +AF,, F,=F_ +AF,

where dg,, F, and F are the original physical quantities at
the previous time, which are called initial displacement, ini-
tial internal force and initial nodal force, respectively. And
the load also has an increment g = q, + Ag;.

Following the rules (6) and (7), the incremental dis-
placement matrix Aug of x' section and the incremental inde-
pendent displacement derivative matrix Adg also obtain the
increment Aug = NAA T, Au,, Adg = BAu,. By substitu-
ting all these formulae into the virtual work equation (8),
and following the variation algorithm, the virtual work
equation of the TL incremental form can be obtained:

fL (SA! Z! +5Ad! Z%y +5AdY AZY) (Fy, + AF,)dx' =
jLsAug Z1(gy + Agy)dx' +8Au! Z'(F, + AF.)
(10)
Zy=Zy +AZ,
Zo=[Zydy, 0 0 0 Zydy, Z,dg]
AZy=[Z,Ad, 0 0 0 Z,Ad, Z,Ad]

Similar to the constitutive relationship (9), the incre-
ments can also be written as

1
AF =D ZAd +~DoZo(dy) Ad,

We substitute it into Eq. (10), and rewrite Eq. (10) into the
following form to make the physical meaning more explicit.

K Au, +K Au, + (K, +K, +Ki)Au, =P -P (11)

The physical meaning of each item is as follows:

Linear element stiffness matrix
K, = fl B"Z' D.Z Bdx'
Initial internal force stiffness matrix
K, = fL B"(F\Zly + My Z), + M Z2) Bdx'
Initial displacement stiffness matrices
K. =1 [ B'Z! D Z,, Bdx
NI —TJL s Yol DAX
K, = f, B'Z}, D,Z Bdx'
1 To,T |
Ky, =7£ B'Z}, D,Z,, Bdx
Equivalent nodal force of load at current time

P=T"A" fL [AIN"Z] + (AN "Z51 gy, + Agy) dx' +
Z'(F, +AF))

The effect of the section internal force at the previous
time on the nodal force

P= LBT(Zg +Z5,) Fyydx!

2.2 UL formulation

Similar to the TL form, when an incremental displace-
ment Au_ at the element nodal point occurs relative to the
previous time, there will also be an increment at the inde-
pendent displacement derivative matrix d of x' section, the
section internal force Fg and the nodal force F, are

dy=Ad,, Fy=Fgy +AF,, F, =F, +AF,

Compared with the TL formulation, the independent dis-
placement derivative matrix dg does not have an initial val-
ue.

Other procedures are the same as with the TL formula-
tion; therefore, the virtual work equation of the UL form is

fLaAdz(zg +AZY) (Fy + AF)dx' =

[68uiZ; (g, + A ax' +50uZ'(F +AF)  (12)
L

Without the initial displacement, the constitutive relation-
ship of the incremental form is simple,

AF =D, Ad;
The UL formulation is

K, Au,+K,Au =P -P (13)

Except that P = fBTZZFSO dx' is different from that in the
L

TL formulation, other integrals and their physical meanings
are the same as those in the TL formulation.

In Eqgs. (11) and (13), each nodal point has seven degrees
of freedom. They are three point displacements, three rota-
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tional angles, and a derivative of u', respectively. The sev-
enth degree of freedom will bring problems to the subsequent
process. The best solution is to carry out a static condensation
during element analysis, which is well discussed in Ref. [8].

3 Examples

Comparative computational results of some simple struc-
tures are given below.

3.1 Planar circular arc

The planar circular arc is the first to be verified. The si-
zes of two planar circular arc structures are shown in Fig. 10
and the material parameter is £ =20 GN/m’. Their support-
ing and loading are also the same. Both sides of the circular
arc are fixed, and the bottom support uplifts by 1 m in e, di-
rection.

In order to verify the correctness and accuracy, an exact
result needs to be identified as the benchmark. As it will
take too much time and effort to obtain a perfectly precise
benchmark, commercial software called MIDAS/Civil2006
is used to calculate the circular arc that is divided into 500
straight beam elements. The result is taken as the relatively
accurate benchmark.

The bending moment M, at the bottom support is selected
as the observed quantity. The computational results of dif-
ferent dividing quantities of curved and straight beam ele-
ments are plotted in Fig. 2. The results with the straight
beam elements are calculated with MIDAS/Civil2006. We
can see that, in order to obtain the generally accurate result
with a maximum error of 5%, the circular arc needs to be
divided into only about 10 straight beam elements, which is
acceptable. However, to obtain a more accurate result, with
an error less than 1%, there need to be 20 or even 30
straight beam elements. In contrast, the error is less than

10

oo
T

Relative error/ %

1 1 1 1 ]
O %ﬂ&a
0 5 10 15 20 25 30

Element number

(a)

Relative error/ %

S = N W A N
T

Element number
(b)

—&— Straight beam element ; —6— Curved beam element

Fig. 2
structures. (a) Planar arc with small slenderness ratio; (b) Planar arc
with large slenderness ratio

Comparison of computational errors for planar arc

1% with 2 to 4 curved beam elements. Obviously, the com-
putational accuracy with the curved beam element is much
higher than that with the straight beam element.

3.2 Spatial spring

The previous example is planar, and the following exam-
ple is about spatial structure. A spatial spring and its dimen-
sions are shown in Fig.3. The axis of the spring is the Ar-
chimedean spiral. The material parameters are E = 20

GN/m’, and G =7.692 3 GN/m’. The supporting, loading
and the relatively accurate benchmark are the same as in the
previous example.

10
—&— Straight beam element
gL —e— Curved beam element
1S3
X
E 6F
o
4
g 4r
=
2
0 1 1 1 1 1 ]
20 40 60 80 100 120 140 160
Element number
(e) (d)

Fig.3 Comparison of computational errors for spring struc-
tures. (a) Spatial spring structure; (b) Facade projection of spatial
spring; (¢) Planar projection of spatial spring; (d) Computational er-
rors

The bending moment M, at the bottom support is selected
again. The plotting processes of Fig.3 and Fig. 2 are simi-
lar. Fig. 3 indicates that a computational result with an error
less than 3% can be achieved with about 20 curved beam
elements. About 90 straight beam elements are required for
an equally accurate result. For an error of less than 1%,
over 150 straight beam elements are required, which is hard-
ly bearable, due to the fact that the same level of accuracy
can be achieved with fewer than 30 curved beam elements.

3.3 Williams frame

The Williams frame ( see Fig. 4) is a classical geometrical
nonlinear example. Yang et al. """ analyzed this example.
Yang et al. " divided each bar into 10 straight beam ele-
ments of the UL formulation, and the result matches
Williams’ analytical result"" well. However, Teh et al. "'
simulated each bar with one straight beam element of the UL
formulation, and the result is unsatisfactory. The straight
beam element cannot reflect such a situation that deformed
bar turns curve. In this paper, the load-displacement curves
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of simulating each bar with one and two curved beam ele-
ments of the UL formulation match Williams’ analytical re-
sult well (see Fig.4).

g
- E =71.012 46 GN/m?

19.13 mm ‘p £

v E

aAgifa

: | | e

328.53 mm 328.53 mm
(a)
350
325}
300 [
275
250 |
Z 225
l’~L 200 |-
g 175
= 150 -
125
100 -
751
50 -
25
O 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Displacement »/mm
(b)

Williams® analytical result

Yang et al. °) using UL formulation (10 straight beam elements
for each bar)

©-0 Teh et al. ['%) using UL formulation (1 straight beam element for
each bar)

This paper using UL formulation (1 curved beam element for
each bar)

—— This paper using UL formulation (2 curved beam elements for

each bar)

Fig.4 Load-displacement curves of Williams frame.
(a) Williams frame; (b) Load-displacement curves

4 Conclusions

1) Establishing the spatial curved beam finite element for-
mulation with displacement vector interpolation is feasible,
which is improved from component interpolation for the
straight beam.

KL R ZE)

& Bk

Bujdd

P~

EX- -4

Do R Tk K LA TAZER, % R 150090)

2) The TL and UL incremental formulations for spatial
curved beams established in this paper are correct.

3) Whether in the linear analysis, or in the geometrical
nonlinear analysis, the accuracy of the curved beam element
is obviously higher than that of the straight beam element. In
regard to the examples in this paper, to achieve equally ac-
ceptable accuracy, the ratio of the required number of curved
beam elements to that of straight beam elements is 1:5.
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