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Abstract: The nonlinear static characteristic of a piezoelectric
unimorph cantilever micro actuator driven by a strong applied
electric field is studied based on the couple stress theory. The
cantilever actuator consists of a piezoelectric layer, a passive
(elastic) layer and two electrode layers. First, the nonlinear
static characteristic of the actuator caused by the electrostriction
of the piezoelectric layer under a strong applied electric field is
analyzed using the Rayleigh-Ritz method. Secondly, since the
thickness of the cantilever beam is in micro scale and there
exists a size effect, the size dependence of the deformation
behavior is evaluated using the couple stress theory. The results
show that the nonlinearities of the beam deflection increase
along with the increase of the applied electric field which means
that softening of the micro beam rigidity exists when a strong
external electric field is applied. Meanwhile, the optimal value
of the thickness ratio for the passive layer and the piezoelectric
layer is not around 1.0 which is usually adopted by some
previous researchers. Since there exists a size effect of the micro
beam deflection, the optimal value of this thickness ratio should
be greater than 1. 0 in micro scale.
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iezoactuation is one of the most common mechanisms

for actuation and sensing in micro electromechanical
systems devices. A piezoelectric thin film can be deposited
on an elastic membrane, and by applying an electric field to
the film, the resulting strain (due to the direct piezoelectric
effect) may cause the membrane to bend. The piezoelectric
bending actuator is one of the most common applications of
the piezoelectric material, and has been widely used in
fields such as precision position control, noise control,
acoustic and pressure sensing, etc!' ™.

However in practical applications, a strong electric field
is often applied to the piezoelectric bending actuators to
achieve sufficient large displacement or force, and the per-
formance of the actuators shows nonlinearities under strong
applied electric fields"”'. To optimize the actuator perform-
ance, detailed analysis of the actuator bending mechanism,
especially under a strong electric field, is necessary.

Also, the size dependence of the deformation behavior of
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a structure in micro scale has been experimentally observed
in metals and polymers """, The behavior cannot be ex-
plained by the conventional theories of mechanics, and the
couple stress theory "' are used to explain the size effect
of the deformation behaviors. Recently along with the de-
velopment of the micro electro mechanical system (MEMS),
the strain gradient theory has been developed greatly!"*"*.
Since the thickness of the piezoelectric bending actuator con-
sidered in this paper is in micro scale, the size dependence
of its deformation behavior should be involved, and till now
no publications have considered the size effect in the re-
search on piezoelectric micro actuators.

This paper aims at the precise static deformation behaviors
of a piezoelectric unimorph bending micro actuator which is
under strong applied electric fields. The nonlinearities of the
deformation of the piezoelectric micro actuator together with
the size effect of the deformation behavior are both consid-
ered simultaneously. The simulation results are obtained and
discussed, and the results may provide a valuable reference
for the design of piezoelectric bending micro actuators.

1 Theoretical Analysis

Fig. 1 shows the configuration of a piezoelectric unimorph
cantilever micro actuator. The cantilever beam consists of a
piezoelectric material layer, a passive (elastic) layer and
two metal electrodes. Usually the thickness of the electrode
layers is far smaller than that of the piezoelectric layer or the
passive layer. ¢, is the thickness of the i-th layer (i =1, 2,
3, 4) and it is shown in Fig.2. The x-y plane is taken to be
the neutral plane of the beam and the z-axis is taken to be
positive upward from the neutral plane. The i-th layer is lo-
cated between the planes z =z, , and z =z, in the thickness
direction, which is also shown in Fig. 2. Assume that the
layers are perfectly bonded together, and the piezoelectric
layer is polarized with respect to the z-axis. When the beam
is driven by externally electric field E;( E,) applied along
the thickness (polar axis) direction (E, = E, =0), a ben-
ding deformation is induced due to the constraining effect of
each layer.

Fig.1 Piezoelectric multilayer cantilever beam
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First, we need to determine the position of the neutral
plane of the multilayer beam. According to Fig.2, the coor-
dinate of the neutral plane along the z-axis can be written

| 2 (h—h_,))/ se(n)

T2 Z L”/se( n)

n=1

n

where h, = 2 t; and se(n) is the relevant compliance term

of the n-th i;ter. Assume that the mechanical property is
isotropic, then se(n) can be considered as se(n) = lelyn.
Here s, , is the compliance coefficient of the n-th layer un-
der a constant electric field E.
_OOOOOOOOS,e
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i Piezoelectric layer

t Passive layer

XN Top electrode; ZZ Bottom electrode

Fig.2 Cross-section of the cantilever beam

1.1 Couple stress theory

The mechanical properties of micro structures are different
from those of macro structures. The deformation behavior of
structures in micro scale is dependent on the size of the
structures, and this has been observed by a number of ex-
periments """, The size-dependent behavior cannot be ex-
plained by the conventional theories of mechanics, and the
couple stress theory is used to explain the size dependence of
the deformation behavior. In this paper the thickness of the
transducer evaluated is in several microns; hence, the size
effect must be considered.

In the couple stress theory, a couple stress tensor is in-
volved excepting the Cauchy stress tensor. The force and
couple vector per unit area transmitted through the surface of
a continuum can be written as

F=n-t, M=n-m (1)

where n denotes the external normal vector; ¢ and m are the
Cauchy stress tensor and the couple stress tensor. When the
couple stress tensor is involved in the equilibrium, the
Cauchy stress tensor is no longer symmetric, and it can be
decomposed as

t=o+71 (2)

where o= (¢t +¢")/2 and 7= (¢t —t')/2 are the symmetric
and antisymmetric parts of the Cauchy stress tensor, respec-
tively. When body force and body couples are not consid-
ered, the equilibrium equations of the deformable body are

V-t=0 (3a)

Vem-et=0 (3b)

Equilibrium equation (3b) indicates that the stress tensor ¢
generates an equivalent body couple - e: ¢ to maintain the
equilibrium of the continuum. The increment of displace-
ment can be written as

du=uV-dx (4)

where x is the position vector of a material in the continu-
um, and u V is the right gradient of the displacement vec-
tor. We can decompose u V as the symmetric part £ and the
antisymmetric part w,

uV=¢+w (5)
where e=(uV+Vu)/2 and w=(uV-Vu)/2. Define the

rotation vector as

0=—e:% (6)

Then the rotation gradient y =@V can be rewritten as

uV-Vu
e:———— =

v
> —(uxV)5 (7)

Xxj/' = 2 = eitx‘gj,s,r

Hence £ and y are two variables which can be used to de-
scribe the deformation of the continuum. y is a non-sym-
metric tensor, and its trace y,, is equal to zero. The work
done by the external force and couples is

j(F-u+M0)ds =

S

f(n-t-u+n-m-0)ds:
jv-(t-u+m-0)dv=
f(t:Vu +Vt-u+mVO+V-m-0)dv

Substituting V - t =0 and V- m - § = - 7: V u into the
above equation yields

ﬁ(F-u +M - 9)ds =
f(t:Vu—TIVu+m10)dv= (8)
J(a':e+mT:X)dv

It can be seen from Eq. (8) that £ and y are conjugated to o
and m", respectively. Denote that w is the density of the
strain energy, thus we have

aw T _ 0w
m =—

S o

(9)

For the elastic deformation of the continuum, we have

)\ 2
w= ;kk +ule e+ lyix)

(10)

where A and y are Lame’s constants, and [ is the length
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scale parameter of the continuum.
1.2 Constitutive equations for piezoelectric layer

Since the piezoelectric layer is in micro scale and the
electric field may be very strong, the strain caused by elec-
trostriction which is directly proportional to the quadratic of
the electric field must be considered in the constitutive equa-
tion of the piezoelectric layer. Here the mechanical stress T
and electric field E are chosen as independent variables, and
a set of nonlinear constitutive equations that can describe the
behavior of piezoelectric materials under a strong electric
field can be written as"”™

S=s"T+dE +oE =8" +8§"° (11a)

D=dT +£'E (11b)

where S is the mechanical strain vector and T the stress vec-
tor. E is the electric field vector and D the electric displace-
ment vector. The term s® denotes the mechanical compliant
coefficient matrix at the constant electric field E. d is the
matrix of the piezoelectric coefficients and « the electrostric-
tive coefficient matrix. &’ is the dielectric coefficient matrix
at constant mechanical stress 7. S'” is the strain vector
caused by the mechanical stress and S the strain vector
caused by the electric field.

We denote z-axis the 3-axis, x- and y-axis the 1- and 2-
axis, respectively. Ignoring shear stress, then we have § =
{S,, S, S3}T ={e,, Eys 8;}T ={&, &5, 53}T and T =A{T,,
T,, T,}' ={o,, 0,, 0.} ={0,, 0,,0,}". For the multi-
layer beam considered in this paper, since there is no exter-
nal electric field along the 1- and 2-axis (E, = E, =0), we
have

D ={D;}, E={E;}

S,=s; T, +d;E; + ayE, i, j=1,2,3  (12a)

D,=d,T +en,E, i=1,2.3 (12b)

1.3 Analysis of the deformation behavior

Since the properties in the x-y plane are isotropic, we
have d,; = d,; and «,; = «,, for the piezoelectric layer.
Hence, in the case of small strain and moderate rotation,
the equation of strain, stress and displacement for the piezo-
electric layer can be written as

(@) 2
e .=kzteg=¢, +dyE +a,E;

where « is the curvature of the bending beam. & ,is the ex-
tension strain of the beam due to the piezoelectric properties
under the electric field,

_ 1,(dy E; + a31E§)/511,3

z ti/sll,i

€0

~A(F )@= B

i#3

i

) +Mi)(z? _Z?—l) -Edys,

and s, , is the compliant coefficient of the i-th layer. Hence
the strain due to the mechanical stress is

n

e, =kz+A (13)

where

L L Z 2
+——+—|(dyE; + a;,E3)
St Sz Sna

t.

i

A= -

T S

For the passive layer and the electrode layers, the corre-
sponding strain is

(1
E,TKIteg=¢€,

(N

&, =kz+B (14)

where B = ¢ . Considering Eq. (7), we can obtain the rota-
tion gradient for every layer,

(15a)

0 _
Xu =K

(D _ (D
X1 “Xn

(N ()]

=X =Xn =Xn =Xa =Xs =xu =0 (15b)

In this paper the static deflection of the beam under the
applied external electric field is developed using an energy
method. According to Eq. (10), the elastic strain energy for
every layer can be written as

1
U= [[Baa0)® el + 2xx™) Jao
vl 2
1 =1,2,3,4

4
U= 2 U

Considering Eq. (12b), the electric potential energy for
the piezoelectric layer is

(16)

(1 _ Eid,s, ;bL K(Z§ —Zi)
U, = j‘ D'Edy = 2R (72 +At3)+

E; & t,bL

3 (17)

where b and L are the width and length of the actuator, re-
spectively. The total potential energy is

U

total :Ue+UE (18)

In order to obtain the deflection of the beam, we use the
Rayleigh-Ritz method.

a Utolal — O

o (19)

Then, we can obtain the curvature of the piezoelectric
unimorph micro actuator as

2
RS

K=

C+D

(20)
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2 A, 2 2 2
where CZ? Z (7 +,u,i)(Z,- -Z;_,), and D=2 Z il ..

2 Numerical Results and Discussion

The materials of the piezoelectric layer and the passive
layer for the unimorph beam are ALN and SiO,, respective-
ly. The metals for the top and bottom electrodes are Au and
Pt, and the thicknesses of the two electrodes are both 0. 1
pm. Young’s moduli for ALN and SiO, are 395 GPa and 75
GPa, respectively. For the Au and Pt, Young’s moduli are
78.3 GPa and 150 GPa, respectively. The Poisson ratios are
0.28 and 0. 17 for ALN and SiO,, and are 0. 4 and 0. 38 for
Au and Pt, respectively. The piezoelectric coefficient d, =
2.1 %107, and the electrostrictive coefficient a, =1.3x
107", The length scale parameters for each layer are sup-
posed to be 1.0 um. By the use of Matlab language, the
numerical results are obtained based on the above theoretical
formulae.

Fig. 3 and Fig. 4 show the nonlinearities of the curvature
via the applied electric field. It can be seen from Fig. 3 that
the nonlinearities vary when the ratio of the piezoelectric
layer and the passive layer varies, but it does not deviate
much with the change of this thickness ratio. However, the
nonlinearities of the curvature vary distinctly with the
change of the electrostrictive coefficient when the applied
electric field increases (see Fig.4).
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Fig.3 Nonlinearity of curvature via electric field at various
ratios of ¢, and £;(t; =5 pm)
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Fig.4 Nonlinearity of curvature via electric field at various
electrostrictive coefficients (#; =5 wm, t, =¢;)

Fig. 5 and Fig. 6 show the determination of the optimal
thickness ratio of the piezoelectric layer and the passive lay-
er. From Fig.5, we can see that the choice of this optimal
ratio is dependent on the thickness of the piezoelectric layer,

and this ratio will tend to be 1.0 when the piezoelectric
thickness becomes macro scale. However, when the thick-
ness of the piezoelectric layer is in micro scale, this ratio
value should be greater than 1. 0 (see Fig. 6). This phenom-
enon results from the size effect of the deformation behavior
of a microstructure. Regarding the exact ratio value, it is
related to the length scale parameters of the piezoelectric
material and the passive layer material which need to be
measured by special experiments. It is worthy pointing out
that this optimal ratio is usually taken to be about 1.0"™
which can be obtained from Fig. 7. Fig.7 is obtained using
the conventional theory of mechanics and does not consider
the size effect. Fortunately some actuators reported”’” are
usually in macro scale, which does not cause any obvious
deviation.
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Fig.5 Curvature of unimorph beam via ratio ¢,/¢, at various
thicknesses of piezoelectric layer (V=7.5V)
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Fig.6 The optimal ratio of piezoelectric layer and passive
layer (V=7.5V)
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es of piezoelectric layer (V =7.5 V, not considering size
effect)



Nonlinear static characteristics of piezoelectric unimorph bending micro actuators 607

3 Conclusion

The static characteristics of a piezoelectric unimorph ben-
ding actuator driven by an applied electric field are
evaluated in this paper. The nonlinearities of the deflection
of the unimorph beam caused by the electrostriction of the
piezoelectric layer under a strong electric field and the size
dependence of the deformation behavior of the beam actua-
tor are considered in the evaluation. The results show that
the nonlinearities of the deformation increase along with the
increase of the electric field which means that softening of
the rigidity exists when a strong external electric field is ap-
plied. Moreover, the optimal value of the ratio for the pas-
sive layer and the piezoelectric layer is not around 1.0
which has usually been adopted by some previous research-
ers. Since there exists a size dependence behavior of the
beam deformation, the optimal value of this thickness ratio
should be greater than 1.0 when the actuator is in micro
scale.

References

[1] Uchino K. Piezoelectric actuator and ultrasonic motor [ M].
Boston: Kluwer Academic, 1996.

[2] Muralt P, Ledermann N, Baborowski J. Piezoelectric mi-
cromachined ultrasonic transducers based on PZT thin film
[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control, 2005, 52(12): 2276 —2288.

[3] Arafa M, Baz A. On the nonlinear behavior of piezoelectric
actuator [J]. Journal of Vibration and Control, 2004, 10
(3): 387 —398.

[4] Joshi S P. Nonlinear constitutive relation for piezoceramic
materials [J]. Smart Mater and Struct, 1992, 1(1): 80 —
83.

[5] Wang Q M, Zhang Q M, Xu B M, et al. Cross. Nonlinear
piezoelectric behavior of ceramic bending mode actuators un-
der strong electric fields [J]. Journal of Applied Physics,

1999, 86(6): 3352 —3360.

[6] Yao Linquan, Ding Rui. The dynamic analysis of piezoelec-

tric bending actuator considering nonlinear piezoelectric effect

[J]. Acta Mechanica Sinica, 2005, 37(2): 183 —189. (in

Chinese)

Yao L Q, Zhang J G, Lu L, et al. Nonlinear static charac-

teristics of piezoelectric bending actuator under strong applied

electric field [J]. Sensor and Actuator A, 2004, 115(1):

168 —175.

[8] Chong A C M, Yang F, Lam D C C, et al. Torsion and
bending of micro-scale structures [J]. J Mater Res, 2001,
16(4): 1052 —1058.

[9] Fleck N A, Muller G M, Ashby M F, et al. Strain gradient
plasticity: theory and experiment [J]. Acta Metall Mater,
1994, 42(2): 475 —487.

[10] Stolken J S, Evans A G. A microbend test method for meas-
uring the plasticity length scale [J]. Acta Mater, 1998, 46
(14): 5109 -5115.

[11] Yang F, Chong A C M, Lam D C C, et al. Couple stress
based strain gradient theory for elasticity [J]. International
Journal of Solids and Structures, 2002, 39 (10): 2731 —
2743.

[12] Mindlin R D, Tiersten H F. Effect of couple-stresses in line-
ar elasticity [J]. Arch Rational Mech Anal, 1962, 11(1):
415 —448.

[13] Toupin R A. Elastic materials with couple-stresses [J]. Arch
Rational Mech Anal, 1962, 11(1): 385 —414.

[14] Ding Jianning, Meng Yonggang, Wen Shizhu. Research
of the size effect on strength of polysilicon micro-electro-
mechanical devices [J]. Journal of Mechanical Strength,
2001, 23(4): 385 —388. (in Chinese)

[15] Hwang Kehchih, Qiu Xinming, Jiang Hanging. Recent ad-
vances in strain gradient plasticity-I-couple stress theory and
SG theory [J]. Journal of Mechanical Strength, 1999, 21
(2): 81 —87. (in Chinese)

[16] Chen Shaohua, Wang Ziqiang. Advances in strain gradient
theory [J]. Advances in Mechanics, 2003, 33(2): 207 —
216. (in Chinese)

[7

—

BEEBRTHMIITHENIELZERSET

EoH

2 IE
=5

R R

(' BFREIRFEER, dw 210094)
(2 Department of Mechanical and Aeronautical Engineering, University of California, Davis, Davis 95616, USA)
ChaxFrhIaEEr, & 210096)

FE.RABE H Rt L EE B R XMPITRERN e YA TR RS A ERIT TR 24
APATHE O EY E WD (HE) Ef2 N E. GL, RABA-Z R T ESHT ARSI MEFHER THT
Rl B A G op | RGPATR LR HSHRE. B O TEFMITEOREL pm TR, GEEHNRERK
B, R ARy B AT B 0 REZCL AT T 047, AT 2 R AR B PAT B 09 JE R RE B 5h A, 3 5% 5 69 3%
Kim¥g K, B o5hme R K et , BILR F I L o B, RAT B B E b B R 6 s AR 38 R A
09 1.0. EMRET, B THEENALERER, ZBEELGREAL LI 1.0 K.

K E A NS AN, L E R MPATE B E N A - R E Gk

FE S35 :0343.5



