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Abstract: This paper concerns the existence of multiple
homoclinic orbits for the second-order Hamiltonian system 7 —
L(1)z+W.(1,z) =0, where L e C(R, R")is a symmetric matrix-
valued function and W(t, z) € C' (R xR", R)is a nonlinear term.
Since there are no periodic assumptions on L(¢) and W(t, z) in ¢,
one should overcome difficulties for the lack of compactness of
the Sobolev embedding. Moreover, the nonlinearity W(t, z) is
asymptotically linear in z at infinity and the system is allowed to
be resonant, which is a case that has never been considered
before. By virtue of some generalized mountain pass theorem,
multiple homoclinic orbits are obtained.
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1 Introduction and Main Result

This paper concerns the existence of homoclinic orbits for
the second-order Hamiltonian system

-L(z+W(1,2) =0 (1)

where L € C(R, RNI) is a symmetric matrix-valued func-
tion, W(t,z) e C'(RxR",R).

Recall that a solution z(#) of Eq. (1) is homoclinic to O if
z(1) #0, z(t) —0 and 7(1) —0 as t— + .

In recent years, the existence and multiplicity of homo-
clinic orbits for Hamiltonian systems have been investigated
in many papers via the critical point theory!'™ . In these pa-
pers, W(t, z) was generally assumed to satisfy the Ambro-
setti-Rabinowitz condition. Precisely, there is a constant y
>2 such that

0<uW(t, 1) <W.(t 2z

for all e R and ze R"\{0}. Later, Refs. [7 —9] weakened
the Ambrosetti-Rabinowitz super quadratic condition. In
many papers, researchers were also extensively interested in
some other growth conditions, see Ref. [ 10] for the sub-
quadratic case and Refs. [9, 11] for the asymptotically quad-
ratic case. Most of the above papers assumed that L(#) and
W(t, z) are either independent of ¢ or periodic in 7. It is well
known that the major difficulty is to prove the (PS)-condi-
tion when one applies the mountain pass theorem. General-
ly, to prove this condition, one needs some good embed-
ding results. It seems that the problem is a little simple
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when the system is periodic, which is a compact condition
to some degree. Without the periodic condition, the prob-
lem becomes rather difficult. It is worth pointing out that re-
cently some authors have treated this problem by analyzing
the spectrum o (A) of the linear operator A corresponding to
the Hamiltonian system. For example, Ref.[12] and Ref.
[ 13] respectively considered the first-order and the second-
order system with variational functionals being super quad-
ratic( or sub-quadratic) at infinity. Under some conditions
on L, the authors proved that o(A) consists of eigenvalues
which implies some compactly embedding results. Based on
these results, they obtained the convergence of the (PS) -se-
quence and then obtained one homoclinic orbit by using a
saddle point theorem.

In this paper, we consider the second-order system (1)
without periodic conditions. Unlike Refs. [12] and [13],
here the nonlinear term W(t, z) is asymptotically quadratic
at infinity. As far as we know, there has not been much
work done in treating this case. Furthermore, if W(t, z) is
even in z, we obtain multiple homoclinic solutions.

Just as Ref. [13], for L, we make the following assump-
tions:

L1) For the smallest eigenvalue /() of L(¢), i.e., I(?)
= .E‘f,L( 1) &€, there is a constant y <1 such that [(?) ks

—00 as ‘ t ‘—»oo .

L2)For some a >0 and r >0, one of the following is
true:

1) Le C'(R,RY) and |L'(Hz|<a|L(nz| for all
|#]>rand all ze R" with |z| =1;

2) Le C* (R, RN:) and ((aL(t) = L"(t))z z) =0 for all
|| > r and all z € RY with |z| =1, where L' (t) =
(d/d)L(8), L"(1) =(d*/df)L(1).

We denote by A the self-adjoint extension of the operator-
(d*/dr*) + L(f) with the domain D(A) CL*: =L’ (R, RY).
Let |A| be the absolute value of A and |A|"* the square
root of |A|. Set E=D( |A|"*) and define the inner prod-
uct on E,

(x2),=([A]"x

with the corresponding norm

A ‘]/22)2 +(x, 2),

Izllo=(22),"

where (-,-), is the inner product in L. Then E is a Hilbert
space.
We need the following propositions from Ref. [13].
Proposition 1  Suppose that L satisfies L1), then E is
compactly embedded in L’ for all pe[1, « ], and for each
pell, o], there exists a constant C ) >0 such that

‘Z‘pscp Izl
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for all ze E, where |- \p is the norm on L”: = L*(R,R"Y).
It is easy to check that D(A) is a Hilbert space under the
inner product

(x,2), =(x,2), +(Ax, A7),
with the corresponding norm
Izl .=Clzl3+ 1Azl

Proposition 2 If L satisfies L1) and L2), then D(A) is
continuously embedded in W2, and, consequently, we ob-
tain

|2(0) [0, [z(0) |—0

as |t|—e, for all ze D(A).

By proposition 1, since the self-adjoint operator A in L* is
bounded from below, it possesses a compact resolvent.
Therefore, the spectrum ¢ (A) consists of eigenvalues num-
bered in A, <A, <...— (counted in their multiplicities).
The corresponding eigenfunctions (e;),_y form an orthonor-
mal basis in L*. Let n”and n’ be the number of A, satisfying
A, <0 and A, =0, respectively, and n =n" +n’. Set E” =

span {e,, ...,e, }, E" =span{e, ,,, ..., e;} =ker A, and E"
=spanf{e;,,, ...}, then
E=E @QE'@E"

We introduce another inner product on E
(x2) =(lA]"x [A]72), + (¥, 2),
The corresponding norm is
Izl =z =ClIAI"z];+ [ )"

where x=x" +x’ +x" and z=z +2' +z' e E QE' D
E".

By proposition 1, we can prove the norms || - ||, and | - ||
are equivalent (see Ref. [13]). From now on, we will al-
ways use the norm || - |jon E.

Define

RS S B ST
D) =5 |2 = 2 7 - W)

where ¥(z) = f W(t, z)dt. Under our assumptions, it is
R

easy to check that @ e C'(E,R).

Denote W(1, z): = %WZ( t, z2)z - W(t, z). Our assump-
tions read as follows:

Al) W(t,z) =0 and W.(, z) =o( |z]) as z—0 uniformly
in t;

A2) W_(t,z) =V(t)z +R_(1, z) with V being a bounded
continuous symmetric (N x N)-matrix valued function and
R.(t,2) =0o( Iz uniformly in 7 as |z|—;

A3) by =inf[ inf  V()EE] >inf o(A) N(0, );
teR ¢eRY, | ¢ =1

A4) sup [R.(1,2) |/ 2] <ee;

A5) Either (a) 0 ¢ o(A - V) or (b) W(t, z) =0 for all
(t,z) and W(4t, 7) = r, for some r, >0 and all (¢, z) with
| 7| large enough.

We will prove the following theorem.

Theorem 1 If assumptions L1), L2) and Al) to AS)
are satisfied, then system (1) possesses at least one homo-
clinic solution. If in addition W(t, z) is even in z, then (1)
has at least [ pairs of homoclinic solutions, where [ is the
number of linearly independent eigenfunctions with corre-
sponding eigenvalues lying in (0, b,).

Remark 1 A2), A3) and AS5) were used by Ding and
Jeanjean to study some first-order system in Ref. [14]. A2)
shows that W is asymptotically quadratic at infinity; A3)
implies that (A) N (0, b,) # (J, which ensures the exist-
ence of (multiple) critical points of ¢. If O belongs to o (A
- V), it causes much difficulty in proving the ( C)-condi-
tion. As a compensation, we use the technical assumption
AS5). A4) looks more general than (R,) in Ref. [14],
where a more rigorous limit is needed since the eigenvalues
of finite multiplicity of A are limited to some bounded
interval.

Remark 2 The following function satisfies A2) to AS)

z 1
Wit =a0y (1= T2p)
where a(t) is bounded and inf a(f) >0.

We will use the following generalization of the mountain
pass theorem''” to prove theorem 1.

Theorem 2 Let E be a Banach space with E = VDX,
where V is finite dimensional. Suppose that @ e C' (E, R)
satisfies the (PS)-condition and

I1) There are constants p, & >0 such that @ | aB,0x = 0

I2) There is an e € 9B, N X and R >p such that if Q: =
(B,NV)®{re|0<r<R}, then @ |,,<0.

Then @ possesses a critical value ¢ = « which can be
characterized as

c= }}Iélﬁ max @(h(u))

ueQ

where
I': ={he C(Q, E) | h=id on 90}

To obtain multiple homoclinics, we need the following
theorem which is a special case of theorem 9. 12 in Ref.
[15].

Theorem 3 Let E be a Banach space with E = V@ X,
where V is finite dimensional. @ e C' (E, R) is even and
@(0) =0. In addition, @ satisfies the (PS)-condition, I1)
and

I3) Let X, C X be a finite dimensional subspace and de-
note E, = VB X,. For each subspace E, of E,, there is an
R(E,) such that ®<0 on E;\B,;, .

Then @ possesses at least dim X, critical points.

2  Proof of the Main Result

In this section, we use theorem 2 and theorem 3 to prove
theorem 1. We consider the functional @ on E = VP X,
where V=E @®E’ and X =E". Obviously, V is a finite di-
mensional subspace.

Instead of the (PS)-condition, here we use the ( C)-con-
dition. Recall a function @ satisfies the ( C)-condition on E
if any sequence {z;} CE satisfying {®(z;) } is bounded and
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(I + |z |)@'(z;)—0 has a convergent subsequence. The-
orem 2 and theorem 3 still hold true under the ( C)-condi-
tion"®

We divide the proof of theorem 1 into the following
steps:

Step 1 @ satisfies ( C) -condition.

Let {z;} CE be a (C)-sequence, that is

[ ®(z) [<C, (1+ |z |)P'(z)—0 (2)

where and, henceforth, C stands for some generic positive
constant.
Then there exists a C, >0,

C2d(5) -3 @)= [ Mg ()

Arguing indirectly, we assume that, up to a subse-
quence, |z, || —o. Setw;: =z/ | z; || . Then [[w, | =
1, \wj\SCp | w, || =C, for pe[l, »]. Choosing a sub-
sequence if necessary, we assume that w,—w in E and w,—
win L" for all pe[1, «].

We claim that w#0. If not, w=0. Choose n,=1 and
set

E, =span{e;,,, ..., e;,, }

Denote
E'=E" ®E°®E,

Then E’ is finite dimensional. E possesses an orthogonal
decomposition

E=E'®E, z=7+z
Since w,—0, w,—~0 in E and w;—0 in L for pe[1, «].
By assumptions, there exists a constant C >0 such that

(W.(t,2) |<C|z] (4)

and
W(t, z)<Clz|? (5)

for all (¢, z) e RxR".
In fact, by A2), there exist C, >0 and R, >0 such that

‘R"‘(t’Z)‘scl
| z]

for all 7 and |z | =R,.
By Al) and A2), there is C, >0 and r >0 such that

[R(t,2)| |W.(t2) ]
“Z‘ < “Z‘ + V(1 [<C,
for all r and |z|<r.
Combining A4), we obtain
\Rz(r,z)\gc

| z|

for some C >0. Then (4) and (5) follow easily since V(t)
is bounded.
It is easy to check that
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D'(z)z

-2
L=t
Iz x

Therefore, by (2) and (4),

Wt z) . |

w; wj\

2]
. Wt z) .
II'w; ||2=fﬁwj‘wj‘+0(l)<
7
C [ 1w hw, [ oy <Clwi[i +o(1) =o(1)
Therefore, 1= | w;, || = w/|| 4 w | > 0. This con-

tradiction shows that w#0.
Since z;(1) —o if w(1) #0, for ¢ e Cy (R, RY),

R (1 z R (1, z
[ [ <
kzll R \z,\
R (1, z R (1, z
J’ ‘ z( Z/)HQD“W]-— ‘+f ‘ &( ZI)HQD“W‘S
R ‘Zj‘ w(t) #0 ‘ j‘
Clel,lw, —wl, +o(1) =0o(1)
Thus,
W.(t, z, V(1) z, R (1 z.
f ( ,)qo: (Dzp ( ,)90H V(1) we
Rzl k[l z |l Rzl R
for all p e C; (R, R").
Therefore, by (2), we have
w-L(Hw+V(H)w=0 (6)

The remaining argument on the boundedness of the (C)-
sequence is standard'"*'"". For the readers’ convenience, we
outline it as follows:

Since w70, (a) of AS) is impossible. Thus we assume
that (b) of A5) is satisfied. Denote Q;(r): ={teR \ z;,(1)
<r} and Qj(r): =R\Q,(r). For r=0, define

f(r): =inf{W(t,z):teR and ze R" with | z|=r}
Then there exists r, >0 such that f(r,) >0. By (3),
G
S(ry)

Let O: = {t: w(t) #0}. Since w satisfies (6), the
Cauchy uniqueness principle implies Q = R. Therefore,
there are £ >0 and I, C Q such that | w(t) | =2¢ for all t e
I, and

|05 (ry) | <

26 11 <o
flry = °°
By an Egoroff’s theorem, we can find a set I'; C I, with
C
\I’O | > —"— such that w;—w uniformly in /I';. Thus, for
Sfry)

almost all j, \wj(t) |=¢ and \zj(t) \Zro in/l'y.
Therefore,
G G
Sfry) Sfry)

is a contradiction. Thus we conclude that {z;} is bounded.
If necessary, up to a subsequence, we can assume that

<|r,I<l0i(r) I<
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—zin E and z;—z in L" for pe [1, + ]. By (2) and

(4), it is easy to see that
-z -

[ Z; -z | ? :((p’(zj) _‘p’(zk))(zf

[ (Wttz) -wanz) g -2 <

-z ‘g

o(1) + j (W.(1,2) -W.(t,2) ||z

o)+ [ CClzl+lzhlz -z [=oh) (D)
R
Therefore, {z'} is a Cauchy sequence in E. Since
dim(E~ @E’) is finite, {z;} is a Cauchy sequence in E
which clearly possesses a convergent subsequence.
Step 2 There are constants p, a >0 such that @ |

aB, mX/

a.

By assumptions, given p >2, for ¢ >0, there is C, >0
such that

(W.(t,2) |<elzl+C, |z|"
and
W(t, ) <elz|*+C,|z|"

Therefore,

W selzi+C |zl <Cle ) z)*+C |z

and then the conclusion holds true.

Step3 Thereisanee dB, NX and R >p such that if Q:
=(B,NV)®{re|0<r<R|}, then @ |, <0

In fact, we can prove that @(z) — — = as || || —e>, z
e E, =V®span{e;,,, ...e; .} (1<k<]).

If not, assume for some sequence {z;} CE, with | z, | —
o, there is b >0 such that ¢@(z;,) = - b for all j e N. Set-
tingw, =z,/ || z; || , we have || w; | =1. Since dimE, is fi-
nite, there exist w e E and a subsequence also denoted by
{w,} such that w,—w. Then w'—w", w —w", wj.)awo.

We claim that w* #0. If not,
equation

from the following in-

b D(z;) 1
- 7 < *II ol

[z |l Iz Il?
1 I W(1, z;)
S w1
27 f Iz ll?

| —0 and then w,—w = w’. We also obtain

(8)

we obtain || w;”

J» Ww(t, zj)ﬁ\

2
Iz

(9)

By A2), W(t, z) :%V(I)ZZ+R(I, 2) and R(t,2)/ |z |?

—0 uniformly in  as |z | —o. Since |z (1) | o if

w(t) #0, we have

R(t, z)) R(t,z;) 2 R(1, z)) 2
= w. < w. —w +
L||zj||2 L\z.\” =< P
R(t, z)
f Slw P =0(1) (10)
w(t) #0 ‘Z/‘

By A3),

f V(I)ZZ (11)

V(t)z
Iz ° "2 f

b
w 1722w, |2

From Eqgs. (9) to (11), one has \ w; \ ,—0. Since dim E,
is finite, all the norms are equivalent. Then, we obtain 1 =
[ w, || <C \ w; | ,—0; this contradiction implies w* #0.
Since

Iw <A, [wls<b [wl]
for all w e span{e;,,, ...e;,,}\{0}, combining (8), (10)
and (11), we obtain
Z:
0<lim (’)2:
gl
1 + 2 1 - 2
tim (3w 7= w7 -
1 V(I)Z.fz.;'_ f R(1, Z.f)2)<
Rz T ezl
L + 2 L - 2 bi 2
Sl = = e s
l +
S (A =by) [ W' [5<0

This contradiction implies @(z) > - ® asze E,, | z |
—> 00 .,

Step 4 By step 1 to step 3, using theorem 2, we obtain
a critical point z whose critical value is no less than a.
Therefore, z is a nontrivial solution of system (1). That is,

Az=W (1, 2)

Hence, by (4),

\AZ\§=L

which implies that ze D(A). By proposition 2, z is a non-
trivial homoclinic orbit.

If W(t, z) is even in z, @ is also even, @P(0) =0 and sat-
isfies all the assumptions of theorem 3. Then we obtain at
least / homoclinic orbits of system (1).

Above all, we complete the proof of theorem 1.

‘<clzli=<Clz)’
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