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Abstract: The Cauchy problem for the nonlinear wave equation
with a critical potential type of damping coefficient (1 +
|x|) " and a nonlinearity | u |” ' u is studied. The total
energy decay estimates of the global solutions are obtained by

using multiplier techniques to establish identity %E( N +F(1) =

0 and skillfully selecting f(¢), g(t), h(t) when the initial data
have a compact support. Using the similar method, the Cauchy
problem for the nonlinear wave equation with a critical potential
type of damping coefficient (1 + \ X \ +1) "' and a nonlinearity
\ u \/H u is studied, similar solutions are obtained when the
initial data have a compact support.
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I n this paper, we study the energy decay for the solution
to the following Cauchy problem for the nonlinear wave
equations

u, +Au+a(x)u, —pAu, +u|u|"" =0

(t,x) (0, o) xR" (D
u(0,x) =u,(x), u,(0,x) =u,(x) xeR" (2)

+2k
—Zk(n >2k)and ¢, u>

where 1 <p < o (n<2k),1 <p<”
n

0 are constants. A is a self-conjugate operator and A =0,
i.e. (Au,u) =0, for any u e D(A) =H". We impose sev-
eral assumptions on the initial data:

u, € H'(R"), u, e L’(R")
supp u, Usupp u, C {x: | x| <R}

for some R > 0. By the method in Ref. [1], it is well
known that if a(x) e C(R"), problems (1) and (2) admit a
weak solution u(t, x) in the class u e C( [0, o ); H(R"))
NC'([0, ); L*(R") ) and enjoy a finite propagation speed
property:

u(t,x) =0 \x\ >ct+R (3)

Now, let us mention several previously related results
concerning the decay estimates of the total energy for the
wave equations with a potential type of the damping coeffi-
cient. Mochizuki et al. *™ studied the Cauchy problem of
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the linear wave equation
u,—Au+a(x,t)u, =0

From their results, we find that a(t, x) = O( \ X \ Y (as

| x| — + o) is critical from the viewpoint of the energy
decay. On the other hand, for the semilinear problem, re-
cently, Todorova and Yordanov'’ derived the (almost) op-
timal decay estimates of the total energy and the other quan-
tities of the solution to the Cauchy problem

u, - Au+a(x)u, + |ul”'u=0 (t,x) €(0, ) xR"
(4)
u(0, x) =uy(x), u,(0,x) =u,(x) xeR" (5)

when u,(x), u,(x) have a compact support and the potential
a(x) satisfies

M cam s [0, 1)
=<dalX) < 5

(14 [x[) (+lxhr 7°

where b, and b, are positive constants. It is essential that y

<1. In Ref. [6], the authors also studied the Cauchy prob-

lem for the linear equation

u,—Au+a(x)u, =0 (6)

However, in Refs. [3,5], the authors did not give the de-
cay rate of the total energy for the solution of Egs. (4) and
(5) for the critical case y =1. Ikehata'”! pointed out that (at
least) in the case when y € [0, 1), Eq. (6) has a kind of
parabolic structure from the viewpoint of the energy decay.
When the potential depends only on ¢, Reissig et al.'*™""
studied some decay (and non-decay) properties of solutions
to the linear wave equation with time-dependent dissipation
a(t) in place of a(x). Their methods, however, cannot be
applied to problems (1) and (2) with a potential depending
on the x-variable. In Ref. [12], Ikehata and Inoue studied
the decay rate of the total energy of the solution of problems
(4) and (5) with the critical damping y =1 under some as-
sumptions for a(x) and c.

Motivated by the ideas of Ref. [12], we investigate the
decay rate of the total energy for Cauchy problems (1) and
(2) with the critical damping y =1. Denote

f” | Au(t, x) |2dx = (Au(t, x), u(t, x) )

In this paper, we make the following assumptions:

b
@1—7"<5<1;

b,
@ 1 —m<5<1,
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@0=<s<l.
where b, is given in Eq. (7).
Theorem 1 Assume that a(x) e C(R") satisfies
b()

a(x)=7—"—
| x

1 b0 (7)

Then the weak solution of Eqs. (1) and (2) satisfies

— ©

f“(u,(l‘,x)z 1 A ”u(nx) |7 ) dx = 0(+7)

f lu(e,x) |""dx = 0™ t— o

.

for any § satisfying (D in the case when 0 < b, <c¢, and 3
when ¢ < b,. In addition, if n >2, g =2n/(n-2k+2), we
obtain

f—

| Vul i”(R") = 0(1‘71 +5)
We can also deal with the Cauchy problem

u, +Au+a(t,)u, —Au, +ulul”" =0

(t,x) €(0, o) xR" (8)

u(0,x) =uy(x), u,(0,x) =u,(x) xeR" (9

In a similar way, we obtain the following result.
Theorem 2  Assume that a(t, x) € C([0, ) x R") with
a,(t,x) e C([0, ») xR") satisfying
a(t, x) =

b, >0;a,(t,x) <0 (10)

0
t+ \x\ +1

Then the weak solution u € C( [0, »); H'(R")) NC' ([0,
®);L*(R") ) of Egs.(8) and (9) satisfies

t—

f”(u,(t,x)z + A u(t, %) |?)dx = 017

t—

[ Tut 0 [7dx = o7

for any & satisfying ) in the case when 0 <b,<c +1, and
3 when ¢ +1 <b,. In addition, if n>2, g=2n/(n-2k+
2), we obtain| Vu | g, =01 %), 1.

Lemma 1 Let u be the weak solution to Egs. (1) and
(2). Then it is true that

d
th(t) +F(r) =0
where
1 2 2 172 2 2
E(t):if [f(u, v+ | A |?) +2guu, +(ag —g)u* +
N

. 2f
pg | Vu | +p7+1\u

p+l ]dx
1 a3
Ft) = —f Qaf —f —2g)uldx +—j (g —f) | Au | *dx +
2 Jpe ' t 2 Jpe t
L — 2 f; p+l
ZLH(g” ag,)u dx +J’R"(g_pi+1) \u\ dx +
2 _& 2
AR S AR

Proof By an approximation, we may assume that the

solution u is sufficiently smooth and vanishes for a large x.

Now we multiply both sides of Eq. (1) by fu, + gu and
integrate the resulting equation over R". First, multiplying
Eq. (1) by fu, and integrating the resulting equation over
R", we obtain

d gty A
o Lal) = e vt +

d f p+l f 1

~— | _J __Jr ptl d

ar g L) =g T 7 = |+
d A f,(Au, u)

G(ER A 1)) -T2 =0 (11)

Similarly, multiplying Eq. (1) by gu and integrating yield
1 1
J. [(guu,)[ _7(#’g1uz)z +7gnl't2 —8u;, +
2 2
2 2 2 2 2
v
(a%_,_,ug\zw\ )r_g,zua_g,zua_g,zu .

e ]dx +cg{Au, u) =0

glu (12)

Then, adding Eq. (11) to Eq. (12), we obtain
iE(t) +F(1) =0
dt a

Lemma 2 Assume that the smooth functions f( 1), g(1),
h(t) >0 satisfy the following conditions, for x e R" and =
t, >0,

1) 2af -f, -2g=0;

2) 2g -f,=0;

3) g, —ag,=0;

f,
4) o —
)gp

=0;

+1

5) g,=<0;

6) ga(x) —g, —h(1) "'g=0.

If u is the weak solution to Egs. (1) and (2), then

1
?f (f—hg)(u/2 - \Amu \zdx +,u,f g\Vu \z)dx +
R" R"

1
p+1

fRuf\u\””dx <E1t) t=1 >0

Proof By conditions 1) to 6) and lemma 1, we have
F(t) >0 and E'(t) <0. This gives E(?) <E(t,) for t=1,.
Since h(t) >0, it follows that

| 2guu, | < h(1)gui + h(1) "' gu’
Thus, we obtain
1 2 2 12 |2
B = o[ [(F=hng)(u; +¢ [A%u ] dx +
2 e
(ga-g —h(t)'Qu’ +ug|vul’ ]dx +

1 +
+1L’}f\u\pldx

p

From condition 6), we obtain the desired estimate.
Now, we choose the functions f(¢), g(¢) and h(?) as fol-
lows:
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(D =1+, gD =1245(1 +0) P h(1) =t +1
(13)

where § is a positive constant.
Lemma 3 Let f, g and & be defined by (13). Then con-
ditions 1) to 6) hold true for sufficiently large t=1¢,>1.
Proof By a direct calculation, we obtain

f=(1=-8(1+1" g =—512J(1 +0) 717

1 -6

g, = 8(1 +8) (1 +1)77°

Obviously, g,(f) <0 and g,(#) =0. This implies that condi-
tions 3) and 5) hold.
Step 1 Using (3) and (7), we obtain

2a(x)f-f -2 =2(1 +0) °((1 +t)a -1 +6) =

2(1 +t)'5(boﬁ—l +5)2
-5 1+
2(1 +1) (I)Om—1+6)>0

for all x with sufficiently large t=1¢,>1. Here we use as-
sumptions (1) and/or (3) which imply

1 +1¢

bO
i ot s 1)= 2 46-1>0
Hlfrolo(“ct+R+l+6 1) ch((S >

Step2 2g-f=(1-8)(1+1) °=(1-8(1+n°=0.
Step 3 From p >1, we obtain
fi 1-8

—_- Y 1—8_1;5 1-5
il 2 (1+1) p+1(l+t) >0

g-
Step 4 In a similar way, we obtain
a _1-6 -1-8
a(x)g-g,—-(1+1) g—T(l+t) (a(l+1) -1+6) =

12;8(]"'[)7176(17 1+t _1+6)2

0 \x\ +1

1-6 Cl-s 1+1 _
AR (b°76t+R+1 1 +5) >0
for all x and large t=1t,>1. Here we use assumptions (1)
and/or (@) similarly. It completes the proof of lemma 3.
Proof of Theorem 1 By lemmas 2 and 3, since

A0 - (D) = 52

(1 +0)'

for sufficiently large t=1,>>1, we obtain

j(uf +c \A“Zu\z)dxsiE(to)(Hl)*‘” f— oo

R’ 1 +6
j\u\"“dxs(p+1)E(z0)(z+1)*“5 — o
.

From the imbedding theorem H,(R") CH;(R"), for g =
2n/(n -2k +2) (see Ref. [13], here Hy(R"), H,(R") are
the homogeneous Sobolev spaces), we have

172
|| Vu ” L'(R") sC ” Au ” L’(R")

Hence, we obtain
Vol i"(R”) =0(1™'")

—

for g =2n/(n -2k +2). This completes the proof of theo-
rem 1.

Proof of Theorem 2 Multiplying both sides of Eq. (8)
by the same multipliers as in the proof of lemma 1, we ob-
tain

d
EE(O +H(t) =0

where
E(t) = %J [f(uf +c \A'/zu \ 2) +2guu, +(ag —g,)u2 +
.
pg|Vul’ +%\u\””]dx
1 I 2
H(t) = | Qaf =f, =29)uidx +5-[ Qg —f) [ Au ax +
R" R"
L _ 2 f; pH
e et o (5= 7)1l
2. M 20 [ 8% »
,ufR“fWu,\dx sz”g,Wu\dx szudx

Because a,<0, we can drop the last term of the right hand
side of H(t) and obtain

d d
EE(t) + F(1) $$E(t) +H(t) =0

Similar to lemma 2, if f(t), g(#), h(z) >0 satisfy the con-
ditions given in lemma 2, then we obtain

172
Au

S -h i+

1
p +1

2dx+,uL”g\Vu\2dx+

ff\u\”*‘dxsE(zo) t=1 >0
N

Therefore, we can use the same method of the proof of
theorem 1 to show theorem 2. To finish the proof, in the
following we only check conditions 1) to 6) given in lem-
ma 2 with a(x, #) in place of a(x). In fact, we only need to
check conditions 1), 3) and 6).

By (10), (3) and @ and/or (3), we obtain

2a(x, ) f - f -2¢ =2(1 +0) *((1 +)a -1 +8) =

-5 1 +1¢ _
2(1 +1) (b‘)i”\x\ - 1+5)>
-8 1 +1
R o v S R

for all x and sufficiently large t=1,>1. Here we just use
assumptions (2) and/or (3) which imply

lim +6-1>0

t—+ o

1+1¢ 0
I ~1) =
(bo(c+1)t+R+l+5 ) c+1

Thus condition 1) is valid. Condition 3) also holds since
a(x,t) >0, g,(1) <0, g,(t) >0. Similar to condition 1),
we obtain

a(xv,t)g—g —(1+1) g =
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L§Q1+n”*uwl+w—1+a)a
1-6 -1-§ 1+
a2y, — 2 is)=
2 ) (°t+\x\+1 +5)
1-6 -1-5 1 +1¢
S0 4y S . 2 S >0
y L+ “WC+UL+R+1 1+o)

for all x with large r=1,>1, where we use assumptions (2)
and/or (3 similarly. This implies that condition 6) is true.
Thus, we complete the proof of theorem 2.

Remark Theorem 1 and theorem 2 are also valid for the
initial and boundary value problem with the Dirichlet and/or
the Neumann boundary conditions.
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