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Abstract: Aimed at the problem of expensive costs in mutation
testing which has hampered its wide use, a technique of
introducing a test case selection into the process of mutation
testing is proposed. For each mutant, a fixed number of test
cases are selected to constrain the maximum allowable
executions so as to reduce useless work. Test case selection
largely depends on the degree of mutation. The mutation
distance is an index describing the semantic difference between
the original program and the mutated program. It represents the
percentage of effective test cases in a test set, so it can be used
to guide the selection of test cases. The bigger the mutation
distance is, the easier it is that the mutant will be killed, so the
corresponding number of effective test cases for this mutant is
greater. Experimental results suggest that the technique can
remarkably reduce execution costs without a significant loss of
test effectiveness.
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utation testing is a fault-based testing technique early
M proposed by DeMillo et al'. It has been proved to
be very useful and effective to detect faults in programs in

many researches ', However, high cost has always been
the key restriction factor that obstructs its widespread use.
Therefore, it is very important to study some techniques to
reduce the cost of mutation testing. Mutation testing impo-
ses unacceptable demands on computing and human re-
sources because enormous numbers of mutants need to be
compiled and executed against one or more test cases' .
The number of executions in conventional mutation testing is
computed as follows:

Suppose that the test case setis t = {c,, c,, ..
7

sample

c,}, and M
is the mutant se

exeCnt(t, M) =#M +#M - #kill(M, {c,}) +
#M — #kill(M, {c,, c,}) +... +
#M - #kill(M, {c,,c,, ..., })

In the computational formula, the symbol # means to ob-
tain the size. For example, #M represents the size of the
mutant set. Function “kill” returns the set of mutants which
have been killed by the test cases in the parameter table.
Obviously, this repetitive execution upon different test cases
will cause considerable costs especially when the mutant

Received 2010-09-06.

Biographies: Jiang Yuting (1986—), female, graduate; Li Bixin( corre-
sponding author), male, doctor, professor, bx.li@ seu. edu. cn.
Foundation items: The National High Technology Research and Develop-
ment Program of China (863 Program) (No.2008AA01Z113), the Nation-
al Natural Science Foundation of China (No. 60773105, 60973149).
Citation: Jiang Yuting, Li Bixin. Novel technique for cost reduction in mu-
tation testing[ J]. Journal of Southeast University (English Edition), 2011,
27(1):17 —21. [doi: 10.3969/j. issn. 1003 —7985.2011.01.004]

turns out to be an equivalent one. If every test case in the
set cannot kill the mutant, all the running work that has
been done for this mutant is useless.

In this paper, we seek an efficient way to reduce this kind
of useless work by executing a mutant fewer times. We as-
sume that if a mutant cannot be killed after a proper number
of executions, it seems highly unlikely to be killed by the
remaining test cases either. Generally speaking, the proper
number depends largely on the implicit relationship between
test cases and mutants.

In order to discover the implicit relationship between test
cases and mutants, the mutation distance is introduced in
this paper. It is defined to describe the semantic difference
between the original program and the mutated program. By
using the mutation distance, test cases and mutants are able
to be linked together. It is obvious that a program with
much semantic change will be easily killed because it will
act very differently from the original one. The distance be-
tween them is long. There is always only one original pro-
gram in the procedure of mutation testing, so we can utilize
the mutation distance to classify mutants. Based on different
distances, we cluster mutants into different classes and then
we can provide an appropriate number of executions for each
class to reduce useless work. Numerical values of the muta-
tion distance in this paper are obtained from sample learn-

ing.
1 Mutation Distance

In mutation testing, many faulty versions (known as mu-
tants) are generated through introducing faults to the original
program'™ . The concrete operation of introducing faults can
be viewed as replacing one “action” in a program with an-
other. For example, expression (a + b) being mutated to (a
- b) is accomplished by replacing a “ +” action with a ““ —
“ action. This kind of operation can be reduced to arithmetic
operator replacement (AOR) which is called a mutation op-
erator. The implementation of mutation testing cannot oper-
ate without mutation operators. Researchers in this field
have proposed many kinds of mutation operators. For exam-
ple, in Tab. 1 we list five typical operators and present some
details about them. These five operators are generally con-
sidered as the most effective operators in mutation testing'”'.
It is worth noticing that even an operator will possibly gen-
erate many mutants, because there are not only different
feasible replaceable actions but also different locations in a
program for change. Take the operator ROR as an example,
there are totally six relational operators: >, <, ==, | =,
> =and < =, if a program has N different relational oper-
ator usages, then the number of mutants produced by ROR
is5 N.

As discussed above, since mutants are generated by repla-
cing one action with another, the difference degree between
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Tab.1 Five typical mutation operators

1:)4;:?32? Description Feasible action
ABS Absolute value insertion x-> ‘ X ‘
AOR  Arithmetic operator replacement +, —, *,/, mod
LCR Logical connector replacement &&, |
ROR  Relational operator replacement <, <=, >, > =, ==, | =
[8[0) Unary operator insertion 4, ==, L+, -

actions can be used to describe the mutation distance be-
tween the original program and the mutated program. In this
paper we use mdis(Z,j) to denote the mutation distance be-
tween programs. i, j are different actions of a mutation oper-
ator; i is the original action while j is the mutated one.

Although i, j are feasible actions of the same mutation op-
erator, mdis (i, j) may vary differently. Entirely different
effects may be produced even by applying the same operator.
For example, a relational expression in the original program
is a + b <c; the mutant with expression a + b < =c¢ is much
the same as the original one semantically and it is only under
the situation a + b = ¢ that they produce different outputs.
However, the mutant with the expression a + b > ¢ will act
quite differently in most cases. So mdis( <, < =) will be
much smaller than mdis( <, >). The value of mdis(i,j) re-
presents how semantically different the two actions are. The
greater the value is, the easier the corresponding mutant will
be killed.

In this paper, mdis(i, j) is computed by learning some
sample programs. Due to the reason that action is not spe-
cific to a single program, the results obtained will be in-
structive and meaningful for other programs.

2 Calculation of mdis(i,j) by Sample Learning

Suppose that an action set for a typical mutation operator
isA={a,,a,,a,,...,a,}, asample set ¥ = {Yl, .Y, ..,
Y"} in which Y', ¥* and so on are all sample programs. The
set of generated mutants is M = {Y),, Yi;, ..., ¥},, Yo, ...,
Y}, | M| =mC’; the member Yf;. means replacing action i
with action j for program Y*. Because there may be more
than one location that can be changed in Y*, ij itself is a set
of mutants. Case = {c,, c,, ¢;, ...} is the set of test cases
which are automatically generated by the test data generator
according to input information about the program. By exe-
cuting all the test cases for each mutant, the number of ef-
fective test cases will be obtained and then the mean number

for Y’; can be figured out. The mean number is called as

mean _ Case ( Y:‘,) and it indicates how many test cases in
Case are effective for Yf/ mdis (i, j) is then computed
through comprehensive analysis of all the selected samples.

The computational formula is as follows:

Zmean _Case( YZ)
mdis(i, j) =

m \ Case \

According to the above formula, mdis(i,j) is always be-
tween 0 and 1. The minimum value is 0, meaning that a

mutant is much the same semantically as the original pro-
gram and it cannot be killed by any case in the test case set.
The maximum 1 means a mutant is quite different from the
original one and can be killed by almost every test case.
From the formula, we can say that mdis( i, j) is actually a
probability value representing what percentage of test cases
are effective, so this value can be used to determine the
maximum allowable executions later. As long as the sample
set is representative and the samples are enough in number,
the results will be accurate enough to describe the difference
degree between actions.

3 Test Case Selection

In mutation testing, of course, the most interesting mu-
tants are those that are small semantically changed leading to
subtle mistakes. However, these mutants are very hard to
kill and always cause a lot of useless work. If a mutant can-
not be killed in restrictive times, it should be marked as a
suspected mutant. Then the tester should be told to resort to
other techniques, either to generate a specific test case or to
determine whether it is an equivalent mutant instead of a
continuous execution which may lead with a high probability
to all having been in vain. In this section we will discuss
how to make use of mdis(i,j) to make mutation testing
more efficient by restricting the maximum executions for
each mutant.

Semantically alike mutants should be handled carefully
and mdis( i, j) can be used to distinguish among the mu-
tants. So mutants are first clustered into different classes ac-
cording to different mdis(i, j). For each class of mutants,
the difficulty level of being killed varies differently. So the
number of test cases selected for them varies. Two test case
selection methods are proposed in this paper. In order to
evaluate the performance of our technique, two performance
indices are proposed.

1) exeCnt: execution times, the workload of mutation
testing, to check the efficiency.

2) test_quality: to verify how many mutants have been
killed, and to show the effectiveness of our technique,
namely

#killed mutant

test_quality = #all_mutant

3.1 Mutant clustering based on different mdis(i,j)

Mutants are first clustered into different classes for better
organization. mdis(i,j) reveals a kind of implicit relation-
ship between test cases and mutants. As discussed above,
semantically alike mutants should be handled carefully. So
in our technique, mutants are first clustered into two clas-
ses:

class( P) \ mdis(i, j) <R
class(Q) | mdis(i,j) >R

where R is the threshold value of mdis(i, ).

With the clustering, mutants are divided into two parts.
We propose that for mutants with short distance, selected
test cases should be limited and thus execution costs can be
saved. For mutants with long distance, it is likely that the



Novel technique for cost reduction in mutation testing

19

first few test cases will kill them, so execution times do not
increase no matter how many test cases are selected. The
mutants in class( Q) can be further divided into different
classes according to mdis( i, j). Our technique deals mainly
with the mutants of short distance.

The critical part in our testing technique that is different
from conventional mutation testing is the using of the test
case selection method. We propose two methods for test case
selection in this paper called CRS and HRS, respectively.

3.2 Complete-random-select ( CRS)

In this method, we randomly select a proper proportion of
test cases from the original set of cases for each mutant ac-
cording to the mutation distance. The number of test cases
selected for class( Q) is determined by mdis (i, j). When
mdis( i, j) is very short, if we still use the same way for
class( Q) to determine the number; only very few test cases
or even none cases will be selected. Obviously, this is not
appropriate because it may miss some effective test cases.
So for class(P), we use a fixed value in this method. In
this way, we can not only reduce execution times, but also
improve the chance of finding some effective test cases. All
the test cases are selected randomly and we assume that if
none of the selected test cases can kill the mutant, which al-
so means that the mutant has reached its maximum allowable
executions, the rest may act in much the same way. The
number of test cases selected for each class of mutants is
computed as follows:

mean_Case( P) = \ Case \ R
mean_Case( Q) = \ Case \ mdis( i, j)

3.3 Heuristic-random-select (HRS)

In CRS, we do not consider the sustained influence of ef-
fective test cases. If one case can kill a mutant, it is more
likely to kill other mutants than other test cases. So by this
method, we take this kind of probability into consideration
and then the selection is not completely random.

We first choose a mutant with the largest distance in class
(P) and then execute it against all the test cases, record ef-
fective test cases and put them into a test case set, and final-
ly extend the set to satisfy its required size. The size of can-
didate test cases set is the same as that of CRS. This method
reserves certain particular test cases for use, to keep the test
_quality as high as possible. More details are described in
the algorithm.

Algorithm 1 Heuristic random select
if m e class( P)

execute Case on mutant with

mdis,,,, (i)

put every effective test case into a set

extend this set to | Case | R

else m e class( Q)

cluster class( Q) again and select the corresponding num-
ber of test cases.

4 Empirical Study

This section conducts an empirical study to evaluate the
performance based on two indices. All the relevant contents

involved in the experiment are organized in Fig. 1.

Sample Generate
learning mutants
| |

mdis(i,j) ‘ Mutants
Mutant
clustering

< :%: > @> ‘@

Test and
analysis

Fig.1 Experimental procedure

4.1 Calculation of mdis(i,j)

The premise of our experiment is to calculate the distance
between actions. Here, we choose ROR as our research ob-
jective. The action setis A={<, >, < =, > =, = =,
! =}. The sample programs''” are listed in Tab.2.

Tab.2 Sample programs

Function prototype Description

bubble(int A[ ], int n) Bubble sort on an integer array

mid(int i, intj, int k) Median of three integers

min(int a, int b) Return the minimal value of two integers

After calculation, fifteen different kinds of mutation dis-
tance learned from samples are presented in Tab. 3.

Tab.3 Values of mdis(i, )

i Jj mdis(, j) i Jj mdis(i, j) i Jj mdis(, j)
< <= 00013 f[|[<= > 0.777 8 > == 0.5532
< > 0.7778 ||<= >= 0.7778 > = 0.5525
< >= 07778 ||[<= == 0.5525 ||[>= == 0.5532
< == 0.5525 ||[<=!= 0.5532 ||[>= != 0.5525
< = 0.5532 > >= 00013 [|[== != 0.7778

4.2 Experimental results

We choose tritype''"! as the program under the test. The

function of tritype is to determine the type of a triangle
based on the length of three triangle sides. By applying the
operator ROR, 85 mutants are generated. Then we cluster
the mutants by mdis( i, j) and compare three methods of test
case selection to find the most optimal one. The first of
them is conventional mutation testing (CMT) which does
not involve a test case selection strategy, and the remainders
are CRS and HRS, respectively.

Results in Fig. 2 and Fig. 3 show that both exeCnt and
test_quality increase as well with the growing amount of test
cases. Fig.2 shows that the HRS is always superior to the
CRS and the CMT in reducing workload, and that with the
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growing amount of test cases, this superiority is more out-
standing. Moreover, test_quality of the three methods are
very similar as shown in Fig. 3, and the CMT is best. The
CRS and the HRS are very close to each other. This is
caused by the reduction of execution times. In the CRS and
the HRS, as both of test case sets are reduced a lot, this
will definitely lead to a loss in test_quality. The number of
killed mutants is decreased and more mutants are marked as
suspected equivalent mutants for human intervention. But
the gap is very small, especially when the test case set is
huge, and the actual test quality of these three methods are
almost the same. So this kind of loss is affordable. It can be
concluded that the CRS and the HRS can reduce execution
cost remarkably and do not deteriorate the effectiveness of
mutation testing.

6_
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Fig.2 exeCnt of three methods
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Fig.3 Test_quality of three methods

‘When the amount of test cases is 25 000, exeCnt in the
conventional method is 872 547, test_quality is 65. 88%,
and the number of mutants that are not killed is 29. So use-
less work in the CMT is at least 72 500 execution times.
The effective work is 147 547 executions, with a very low
work efficiency of the whole workload which is about
16.9% . The total workload in the HRS is 427 179 execu-
tions and the test_quality is 62.4% . With the number of
surviving mutants increasing to 32, test_quality decreases
about 3% , but workload decreases 51% , so testing efficien-
cy has been greatly improved.

In actual mutation testing, the amount of mutants is al-
ways very huge, far more than 85. In this situation, mu-
tants can simulate more mistakes and the workload of testing
will be heavy. If using the CMT, the efficiency will be very
low; while using the HRS, the efficiency of the system will
be enhanced greatly, and the test quality is maintained at the
same time. The research findings in this paper will be espe-
cially helpful when the program under the test is of a large

size because each execution of the program will cost a lot of
time and resources.

Furthermore, the results in the above experiment show
that the HRS is the best of the three methods in both exeCnt
and test _quality. So we study the HRS further.

Fig. 4 and Fig. 5 show that exeCnt and test _ quality are
rising synchronously with the increase of R. exeCnt increa-
ses greatly when R is in the range from 0.5 to 0. 6. Also it
can be seen that test quality is locally optimal when R is
about 0. 5. So in this experiment, it is better to set R as
0.5. That is because at this point, test_quality reaches a
higher level and exeCnt is not very large.
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Fig.4 Relationship between R and exeCnt
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5 Conclusion

This paper proposes to apply test case selection in the pro-
cedure of mutation testing to reduce testing cost. We define
the mutation distance to represent the semantic difference
between the original program and the mutated program, and
then use it to guide in the selection of test cases. Experi-
ments show that our technique is useful in cost reduction.
However, there still exist some problems to be solved. The
mutation distance is largely determined by the sample set,
so the procedure of sample learning is very important. Fu-
ture work may be conducted on making sample learning
smarter and being able to deal with feedback information.
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