Journal of Southeast University (English Edition)

Vol.27,No. 1, pp.22 -25

Mar. 2011 ISSN 1003—7985

Semantic-based query processing for relational data integration

Miao Zhuang Zhang Yafei

Wang Jinpeng Lu Jianjiang Zhou Bo

(Institute of Command Automation, PLA University of Science and Technology, Nanjing 210007, China)

Abstract: To solve the query processing correctness problem for
semantic-based relational data integration, the semantics of
SAPRQL (simple protocol and RDF query language) queries is
defined. In the course of query rewriting, all relative tables are
found and decomposed into minimal connectable units. Minimal
connectable units are joined according to semantic queries to
produce the semantically correct query plans. Algorithms for
query rewriting and transforming are presented. Computational
complexity of the algorithms is discussed. Under the worst case,
the query decomposing algorithm can be finished in O(n’) time
and the query rewriting algorithm requires O(n") time. And the
performance of the algorithms is verified by experiments, and
experimental results show that when the length of query is less
than 8, the query processing algorithms can provide satisfactory
performance.

Key words: data integration; relational database; simple protocol
and RDF query language(SPARQL); minimal connectable unit;
query processing

doi: 10.3969/j. issn. 1003 —7985.2011.01. 005

‘ x T ith the rapid development and extensive applications

of information technology, the explosive growth of da-
ta resources is a new, disturbing trend'”. Considering the vast
amounts of data stored in heterogeneous relational databases, it
is difficult to achieve interoperability among them'. Integra-
ting and querying data from heterogeneous sources is a hot
research topic in the field of databases'. The goal of data
integration is to provide users uniform access to multiple
heterogeneous data sources'”. Due to the lack of semantic
description capabilities, traditional data integration systems
cannot resolve the semantic heterogeneity of data.

The semantic Web has provided several new approaches
for data integration. One of the most important applications
is the ontology-based integration of heterogeneous relational
databases, which has recently received special attention in
the database community”™ . However, one of the primary
obstacles is how to convert a global query into correct SQL
query plans for accessing the relational databases. Systems
like Virtuoso'” rewrite SPARQL'™ queries to SQL. The
MySQL SPASQL"™ module compiles SPARQL queries di-
rectly into an evaluation structure to be executed by a rela-
tional engine. However, these works only focus on access-
ing conventional relational databases using SPARQL, which
do not take the integration into account. A few early works

Received 2010-07-08.

Biography: Miao Zhuang (1976—), male, doctor, associate professor,
emiao_beyond@ 163. com.

Foundation items: Weaponry Equipment Pre-Research Foundation of PLA
Equipment Ministry (No. 9140A06050409JB8102), Pre-Research Founda-
tion of PLA University of Science and Technology (No.2009JSJ11).
Citation: Miao Zhuang, Zhang Yafei, Wang Jinpeng, et al. Semantic-
based query processing for relational data integration[J]. Journal of South-
east University (English Edition), 2011, 27(1):22 —25. [doi: 10. 3969/].
issn. 1003 -7985.2011.01.005]

on integration use ontology for relational databases and con-
struct ontologies from relational databases schema. This ap-
proach cannot fully capture the semantics behind the rela-
tional schema and only reflects the structure of databases,
which makes it hard to integrate heterogeneous relational da-
tabases.

This paper focuses on the query processing problem for
ontology-based relational data integration. In our proposal,
RDF (resource description framework) ontology is used as a
mediated schema for the explicit description of the data
source semantics, providing a shared vocabulary for the
specification of the semantics. The semantic of query rewri-
ting is further discussed and a query rewriting algorithm is
presented to reformulate an SPARQL query into SQL que-
ries, so that SPARQL can access heterogeneous relational
databases without converting the data into physical triples.

1 Architecture of Semantic-Based Query Processing

The architecture of semantic-based query processing for
relational data consists of five layers (see Fig. 1). The ap-
plication layer provides a unified portal based on global
schema for users and other applications. The semantic layer
is responsible for the establishment and maintenance of glob-
al schema, storage of the semantic descriptions of heteroge-
neous relational databases, and providing clear definitions of
concepts. The mediator layer mainly consists of three parts:
query decomposition, query rewriting, and query transfor-
mation. Query decomposition is in charge of the semantic

Application
| layer

I
1
[Application interface] I
I

SrrIIsIIIIIonis
I

I

I[Entailment 9

I

(Pl Ko P

! Knowledge base || |

Domain ontology 1

1
1
) Semantic

1 layer

(i)

i [Query decomposing]
| ~—
I
I

1
1
1
|
1
1

| Mediator
: layer

Query
transforming

Local

1

Relational database

Fig.1 Architecture of semantic-based query processing for
relational data

Semantic-based query processing for relational data integration

23

analysis, standardization and reorganization of the global
query; query rewriting is in charge of rewriting the global
query into sub-queries over the underlying databases; the
query transformation converts SPARQL queries over global
schema into local SQL queries. The description layer de-
scribes the semantics of heterogeneous relational databases
using global schema. The data layer consists of several het-
erogeneous relational databases. Our work focuses on the
query processing from the semantic layer to the description
layer and mining the semantics of relational data. The archi-
tecture is shown in Fig. 1.

2 Semantics of SPARQL Queries

RDF describes things by making statements about an
entity’s properties. Thus, the term RDF graph is defined as
a set of RDF triples. In this paper, we propose query pro-
cessing algorithms over an RDF graph model. The SPARQL
query language is based on matching graph patterns. Pérez
et al. introduced the formal semantics of SPARQL in Ref.
[10] and we use SAPRQL as the query language.

Definition 1 (SPARQL query) A SPARQL query Q =
SELECT vars WHERE gp, where vars = {v,, v,, ..., v, },
lists all the return variables in Q, gp is a set of RDF triples
that Q should satisfy. Let var(gp) be all variables in gp,
obviously vars C var(gp).

Definition 2 (SPARQL query result) The query result
of an SPARQL query Q = SELECT vars WHERE gp above
an RDF graph G is a finite set of mappings {2, = (u,, u,,
..., M,), where u, maps v, to an RDF term in G.

Definition 3 (query containment) Given two SPARQL
queries Q, and Q,, VYu, € 2,, Iu, € O,, where
pi(vars(Q,)) Cu, (vars(Q,)) and u,; (gp,) Su, (gp,,)s
then Q, contains Q,, denoted by Q, CQ, or 0,20,.

Definition 4 (query equivalent) Given two SPARQL
queries Q, and Q,, if Q, € Q, and Q, C Q,, then Q, is
equivalent to Q,, denoted by O, =Q,.

Definition 5 (SPARQL containment mapping) Given
two SPARQL queries Q, and Q,, mapping 7 from vars(Q,)
to vars (Q,) is a containment mapping, if the mapping
meets the following conditions:

1) If 7(x) € vars(Q,), then x € vars(Q,), namely,
vars(Q,) Cvars(Q,);

2) 7(gpo,) S2po,

Lemma 1 Given two SPARQL queries Q, and Q,, O,
2 0, ¢ there is a containment mapping from Q, to Q,.

3 Query Processing Algorithms

In a semantic-based heterogeneous data integration sys-
tem, users are faced with a global model, and put forward
queries based on it. The integration system decomposes
global queries into sub-queries according to their content,
rewrites the sub-queries to be consistent with the semantic of
underlying relational databases, and then transforms the re-
writing result to SQL queries, so that the queries can be ex-
ecuted on relational databases. Query processing includes
query decomposing, rewriting and transforming.

3.1 Query decomposing

According to the semantics of SPARQL queries, a com-

plicated graph pattern is composed of base graph patterns
joined with operators and variables, and the base graph pat-
tern is the minimum unit of the query graph pattern. Query
decomposing is to decompose complicated graph patterns in-
to base ones. The main idea of query decomposing is as fol-
lows. If the query graph pattern is the basic graph pattern
then the query is returned; and if the query graph pattern is
the group graph pattern, the alternative graph pattern or the
optional graph pattern, then sub-queries are constructed.
The method of constructing sub-queries is to combine que-
ries with AND, UNION, OPTION and recursively call the
query decomposing course until the query cannot be decom-
posed any further.

3.2 Query rewriting

A semantically correct query plan amounts to finding
proper relational tables whose sub-graph covers the SPAR-
QL query. We present a query rewriting algorithm to gener-
ate semantically correct and executable query plans under
the RDF graph model. Our algorithm proceeds in two sta-
ges. In the first stage, we find all the relative tables and de-
compose them to minimal connectable units (MCU) accord-
ing to source descriptions. In the second stage, we join
MCUs to produce the query plans.

3.2.1 Generating the MCUs

An MCU is a subset of RDF triples in source description
of a relational table that can be joined with other MCUs and
executed on heterogeneous databases. Intuitively, an MCU
represents a fragment of semantic mapping from the query to
the rewriting of the query.

Formally, we define MCUs as follows.

Definition 6 (minimal connectable units) Given a
SPARQL query Q, a relational table P and its table sub-
graph G,, an MCU m for P is a tuple of the form (Y, u')
where Y is a subset of triple patterns in G, and u' is a partial
mapping from variables appearing in G, to corresponding
columns in P.

Then the algorithm of finding the MCUs is as follows:

find MCUs(Q, G,)
Input: SPARQL query Q.
Output: G,.
Initialize M = @;
For each triple pattern ¢ in Q, do
for each triple pattern ¢’ in G,, do
If there exists a mapping 7 that map ¢ to ¢’, then
find the minimal subset (denoted by Y) of triple
patterns of G, that is connectable.
find the subset (denoted by ') of w that is rela-
tive to Y.
M=M U< Y, :U’/>;
end for
end for
return M

The algorithm for creating the MCDs is shown in Fig. 2.
We say a set of triple patterns Y is connectable if the follow-
ing conditions hold: 1) Each return variable of Q is also a
return variable in Y. 2) If x is not a return variable in Q,
then for every triple pattern ¢ that includes x, re Y.

3.2.2 Joining the MCUs
In this phase we consider combinations of MCUs, and for

24 Miao Zhuang, Zhang Yafei, Wang Jinpeng, Lu Jianjiang, and Zhou Bo

each valid combination we create a conjunctive rewriting of
the query. The final result is a union of conjunctive queries.
Given a set of MCUs M, the actual rewriting is constructed
as follows:

joinMCUs(Q, M, A)

Input: an SPARQL query Q, a set of MCUs M, M =
tm,, my, -, m, |, where m, =(Y,, w,").

Output; a set of rewritings A.

Initialize A = @;

For each minimal subset {m,, m,, ---, m,} of M such
that

Y, U Y,U ---U Y, cover all triple patterns of Q.

Create the conjunctive rewriting Q" containing all the

relative tables to {m,, m,, -+, m,}
Add Q' to A
end for
return A

3.3 Query transforming

After rewriting, the sub-queries are consistent with the se-
mantics of underlying relational databases. But they still
cannot execute on relational databases. The rewriting results
should be transformed into SQL queries for accessing the re-
lational databases. The query transforming algorithm is
shown as follows:

queryTransformation(gp)
Input: SPARQL query Q = SELECT vars WHERE gp.
Output; SQL query plans.
For each variable v, in vars
add v, in varlist
SQL = “SELECT DISTINCT” + varlist + “FROM”
+ graphPatternTranslation (gp)
return SQL

Here, graphPatternTranslation (gp) is the graph pattern
translating algorithm, which translates the given graph pat-
tern gp into SQL queries and the detail of the algorithm is
omitted.

4 Evaluation

The proposed algorithms in this paper are fully implemen-
ted on a Pentium Dual 1. 79 GHz computer with Java 1. 6.
We construct 10 different relational databases, containing
100 heterogeneous relational tables. We also construct 100
different global queries with length from 1 to 10 to simulate
various user queries.

4.1 Computational complexity

In the query decomposing algorithm, given an SPARQL
query, if it contains some nested operations, the query de-
composing algorithm will be called repeatedly. Let n stand for
the number of triples in a query pattern; and k(1 <k<n-1)
stands for the number of nested operations in the query. Un-
der the worst case, the query decomposing algorithm can be
finished in O(n*) time. Its time complexity is polynomial.

As for the query rewriting algorithm, given a set of data
source V=1{v,, v,, ==, v,} and query Q = SELECT vars
WHERE gp, |gp| = m, the query rewriting algorithm
needs to find all the possible subsets of V that can form an
MCU, which requires O (n™) time. However, as the first

step of query rewriting already rules out the nonrelevant data
sources, significantly cutting the unnecessary search bran-
ches, it can be expected that the actual operating efficiency
of the query rewriting algorithm will be more satisfactory.

4.2 Experimental results

We conducted experiments to verify the performance of
the proposed query processing algorithms and the results are
shown in Fig.2. Fig.2(a) shows the performance of query
processing scalable in terms of the length of queries and the
runtime is almost exponential to the length of queries. An
interesting finding is that the runtime is not sensitive to the
length of queries when the number of data sources is less
than 50. Fig.2(b) shows the performance of query process-
ing scalable in terms of the number of data sources and the
runtime is almost exponential to the number of data sources.
But the runtime is not sensitive to the length of queries when
the length of queries is less than 8.

800 - Number of sources:

700 —=— 100

600 - —e— 80
2 500 30
2 400 -
E
£ 300
=
& 200

100 -

0 -
~100 1 1 1 1]
0 2 4 6 8 10
Length of queries
(a)
800 Length of query:
700
—=— 10

600 - —e—8
z 500 - ——5
T 400
E
£ 300
=1
200 -

100

O -
~100 1 1 1 1]
0 20 40 60 80 100

Number of sources

(b)

Fig.2 Performance test of query processing

4.3 Discussion

The experimental results are consistent with the analysis
of time complexity. When the length of queries is less than
8, but there are lot of data sources (more than 80), the
query processing algorithms can provide nice performance
(within 500 ms). This is also consistent with the practical
circumstances in integration systems, where the query length
is usually short.

5 Conclusion and Future Work

In this paper we consider the query processing problem in
heterogeneous data integration systems. We use ontology as
the mediated schema for integration. The semantics of query
rewriting is defined. Algorithms for query rewriting and

Semantic-based query processing for relational data integration

25

transforming are presented, so that SPARQL queries over
global schema can be rewritten into local SQL queries that
can be executed on heterogeneous relational databases. The
approach and algorithms provided in this paper can be ex-
tended for other types of data sources, but some of the com-
plex semantics (i. e. CONSTURCT, ASK) are not dis-
cussed. We leave these problems for future work.

References

[1] Gantz J. The diverse and exploding digital universe[R].
Framingham, MA, USA: International Data Corporation,
2008.

[2] Bell G, Hey T, Szalay A. Beyond the data deluge[J]. Sci-
ence, 2009, 323(5919) . 1297 —1298.

[3] Halevy Y A, Rajaraman A, Ordille J J. Data integration:
the teenage years[C]//Proc of the 32nd International Con-
ference on Very Large Data Bases. Seoul, Korea, 2006: 9
—16.

[4] Bernstein A P, Hass M L. Information integration in the en-

terprise[J|. Communications of the ACM, 2008, 51(9) .
72-79.

[5] Dou D, LePendu P. Ontology-based integration for relation-
al databases [C]//Proc of ACM Symposium on Applied
Computing. Dijon, France, 2006 461 —466.

[6] Zhu H, Madnick S. A lightweight ontology approach to
scalable interoperability[C]//Very Large Data Bases Work-
shop on Ontology-Based Techniques or DataBases and In-
formation Systems. Seoul, Korea, 2006: 45 —54.

[7] Erling O, Mikhailov I. RDF support in the virtuoso DBMS
[C]//Proc of the 1st Conference on Social Semantic Web.
Leipzig, Germany, 2007 59 —68.

[8] Hommeaux E, Seaborne A. SPARQL query language for
RDF[EB/OL]. (2008-01) [2010-01-10]. http://www.
w3. org/ TR/rdf-sparql-query/.

[9] Prudhommeaux E. SPASQL: SPARQL support in MySQL
[EB/OL]. (2006)[2009-12-20]. http://xtech06. usefu-
linc. com/schedule/paper/156.

[10] Pérez J, Arenas M, Gutierrez C. Semantics and complexity
of SPARQL [C]//Proc of the 5th International Semantic
Web Conference. Athens, USA, 2006. 30 —43.

XEABFEERFHEXEBLEREAR

%

R Edm AT B K

(MAFRIRFI/EQHLF R, &K 210007)

W= Ak

fil e F T8 0 K B BIE SR AR P 0 2 10 4L 22 O A b 1) AR

, % XA LT SPARQL % 445 4] #9355, &

EWEGIAE P, RIE 48K 09 B E IR LS5 A ﬂi'l‘ﬁfﬁfiﬁém FARMEE R IELEB R DT EREE T

%Fifﬁﬁé’]*‘ﬁb
AIETE O) ENT R, ENES
Hﬂ%’éi@k@i'l‘ﬁ‘8,%%!(%%%#&’;953“,21@?\‘52

AR TR TENNEINETEREGEHLE SH
BRT IR B BE A O(n™). &
Hix B ABIAFN ffs’cﬁ‘%.

FE LM THR,ERFEALT, &
ST ERIAIET Fok ey Ak :\Eﬁé‘é“%ﬁ

KGRI K E R % A KIEE SPARQL; N TR T AL

HE 5 ES TP182

