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Abstract: To discuss the relationship between stability and
bullwhip effect in the supply chain system, a basic model in a
production-inventory control system is developed using difference
equations. Z-transform techniques are applied to investigate the
production ordering and inventory dynamics. For the two
operational regimes of sufficient inventory coverage and
insufficient inventory coverage, the scope of decision parameters
which make the system stable or instable is investigated. Under
two operational regimes and the actual system, production release
rates, stability/instability and bullwhip effect in the stable region
and instable region are examined based on different demand
functions, and then the numerical simulation results are given.
The results show that reasonable choices of fractional adjustment
of inventory and supply line can make the system stable and
decrease bullwhip effect. It is summarized that the piecewise
linearization based on the stability analysis approach is a valid
approximation to the analysis of production-inventory ordering
systems with nonlinearities. Some interesting results are obtained
and they have important implications for improving inventory and
order decisions in supply chain systems.
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he supply chain is a complex system, and there exist
T various types of uncertainties, e. g., demand uncer-
tainty, production uncertainty, delivery uncertainty and
lead-time delays. Analysis of production and inventory dy-
namics helps reveal periods of inventory build-ups, stocks-
out, overtime production and production shutdown, which
costs the companies in terms of profits, market position and
customer satisfaction. This phenomenon, in which the vari-
ance of order quantities increases as we move away from the
end customers in a supply chain, is termed as the bullwhip
effect'”’. The Beer Game, developed at MIT and reported in
Ref.[2], was widely used in teaching inventory manage-
ment. Springer and Kim"' determined supply chain designs
and policies that minimize volatility using a system dynam-
ics approach. Wang et al. " examined the influence of fore-
cast-updating methods between order quantity and actual de-
mand in the amplifications of the bullwhip effect. A recent
study by Strozzi et al. "' applied a control technique ( state-
space method), based on the system’s divergence, to con-
trol the local stability of a simple supply chain in order to
reduce the costs as well as the bullwhip effect. Sipahi et
al. ' investigated stability of inventory behavior controlled
by an automated pipeline inventory and an order-based pro-
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duction control system ( APIOBPCS) with respect to delays
originating from different physical reasons, lead time, trans-
portation and decision-making.

A natural choice to examine the production and inventory
dynamics is the application of system dynamics and control
theoretical techniques. A comprehensive literature review on
the use of control theoretic concepts for the dynamic analysis
of production-inventory systems can be found in Refs. [7 —
8]. The supply chain systems are analyzed through the ap-
plication of control theoretic tools such as block diagrams,
and functional transformations'”’. Using linear Z-transform
analysis, Disney et al. """ identified and proposed a method
to eliminate the possibility of an inventory drift due to un-
certain pipeline lead times. The parameter scope for frac-
tional adjustment of inventory and fractional adjustment of
the supply line is [0, 1]""". However, in this paper, we ex-
tend the parameters scope to be greater than zero.

In this research, the difference equation models of the
production-inventory system are constructed. The produc-
tion release ordering rules of the system are adapted from
the APIOBPCS family of the models'”’. The shipment to
the customers is defined as a function of demand and on-
hand inventory to ensure that the shipment does not exceed
the on-hand inventory. It is assumed that shortages are al-
lowed, thus the shipment rate is a typical nonlinear func-
tion. Such nonlinear functions are linearized using a local
linearization technique, in which the nonlinear function is
separated into piecewise linear functions. The boundary
conditions for the system stability are computed based on
Jury’s Test'”. The function transformation technique is
used as a basis for our research and allows us to gain impor-
tant insights about the dynamic behavior of supply chain
systems. Numerical results are provided to indicate the im-
pacts of decision parameters on stability/instability in the
two operational regimes. Furthermore, the relationship be-
tween bullwhip effect and stability/instability in the supply
chain is created through numerical analysis.

1 Basic Model

Assume that the system is periodically reviewed. Given
lead time 7, the sequence of events during one period is giv-
en as follows: satisfying consumer demand based on on-
hand inventory, forecasting the demand, making the pro-
duction release quantity, reviewing the remaining inventory
and supply line, and receiving the production release quanti-
ties which were placed in period ¢ — 7. Other variables and
notations needed for the model at time period ¢ are given as:
L, is the external customer demand; L, is the forecasted de-
mand; S, is the on-hand inventory ( the actual inventory mi-
nus the backlogged); D, is the shipments; P, is the produc-
tion release quantity; R, is the production rate; and SL, is
the supply line.
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1.1 Shipment

It is noted that all the unfulfilled demand is assumed to be
lost. In the model presented above, the shipment rate is giv-
en as a function of the demand and the inventory available.
Assuming a sharply discontinuous function, it can be seen
that when the demand is less than the inventory available,
the shipment rate equals the demand; and when the demand
rate is more than the inventory available, the shipment rate
equals the inventory available, as shown below:

L
S

LISSI—] (1)
L>S,_, (2

t

D, =min(L,, S, ,)—D, = {

t-1

In the first operational regime, it is assumed that there is

always sufficient inventory coverage to meet the desired

shipments (Eq. (1)). In the second operational regime, it is

assumed that there is not sufficient inventory coverage to
meet the desired shipments (Eq. (2)).

1.2 Demand forecast

The forecasted demand of the products is modeled as the
first-order exponential smoothing of the customer demand,
with a smoothing constant §. That is

L =6L_, +(1-0)L,_, 0<f<I

1.3 Production ordering

The production ordering aspect determines the production
release quantities by the ordering rule which is based on the
forecasted demand, the difference between the desired inven-
tory level and the current inventory level, and the difference
between the desired supply line and the current supply line.

P, :I:t—l +aS(St*—l =-S5 +a5L(SL:-1 _SLI—])

Based on Little’s Law, the desired supply line in the sys-
tem is set to yield the desired throughput (SL", =L, ).
The desired inventory is set equal to the forecasted demand
(S, =L,_,). The fractional adjustment rate ag for invento-
ry describes how much of the discrepancy between the de-
sired and current levels of inventory is to be added to the
production release order. The fractional adjustment rate ay,
for the supply line describes how much of the discrepancy
between the desired and current levels of the supply line is
to be added to the production release order.

P[z]

1.4 Inventory and supply line review

The inventory level accumulates the difference in the pro-
duction rate and the shipment rate:

S, =S, ,+R,-D,

The supply line accumulates the difference in the produc-
tion release rate and the production rate:

SL,=SL,_, +P, - R,

The production process is modeled as a typically fixed
pipeline delay:

2 System Analysis

Production and inventory control systems can be readily
viewed as a system sampled at regular discrete intervals,
since the ordering rules are evaluated only at discrete points
in time, such as every day or every week. In this paper, the
Z-transform technique is used to obtain generalized transfer
functions of the production release order. Now, a necessary
step before the Z-transform analysis is the linearization of
the non-linear functions present in the system model. Such
nonlinear functions are linearized using local linearization
techniques, in which the nonlinear function is separated into
piecewise linear functions.

The Z-transform of the production ordering and inventory
control system (refer to section 1), with the excess equation
reduced, are given as follows:

~oo, . BLIZ]

Liz] Tz-1+0
_ L[z] Llz] <S[z]
"{z"S[z] L[z] > S[z]

R[z] =27 "P[z]
(1 +7ag +ag)L[z] —ag SL[z] - agS[z]
Z

Plz] =
_z(R[z] - D[z]) SL[z] _2(R[z] - P[z])

S[z] -1 -1

Simplifying and collecting in powers of z, the transfer
functions result in the following expressions. The sufficient
inventory coverage and insufficient inventory coverage are
described as

(0(z-1)(1 +7ag) +a(z-1+62))(zr —7+3)°

= 3 3 (3)
LIzl (z-1+60)(27as -27ag +(z-1)(zr =7 +3) +ag (z7 =7 +3)")
Plz] _ 0z(z-1)(1 +rag +ag)(zr —7+3)° “
Llz] (z-1 +0)(27ag(z-1) —27agz+2(z-1)(zr =7 +3)° +agz2(zr -7 +3)°)

The control parameters including the fractional adjustment
rate for inventory, the fractional adjustment rate for the sup-
ply line, the exponential smoothing constant for the forecas-
ted demand and the production lead time are identified as af-
fecting the system stability. The stability conditions for the
two different considered operational regimes are obtained in
terms of the above control parameters. The difference in the
transfer functions between Eq. (3) and Eq. (4), and the re-

spective resultant system become explicit when studied in
terms of system stability, as detailed in section 3.

3 Analysis of System Stability

Now, it is important to understand how the production or-
dering and the inventory control system responds to any
change in its input (i. e., demand), especially under a fluc-
tuating market. Does the response result in increasing ampli-
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tude oscillations in general, or does the response appear
controllable and damped? Thus, it becomes essential to
know under what conditions the system is stable or instable.
Hence, the general conditions for the system stability from
the P(r) transfer functions in terms of the various design pa-
rameters are derived.

In this paper, Jury’s test is employed to determine the lo-
cation of the roots. A system given by its closed form trans-
fer function is said to be stable if all the roots ( poles) of the
transfer function’s denominator polynomial lie within the
unit circle in the complex plane. Systems with poles that are
outside the unit circle or with repeated poles in the unit cir-
cle are said to be instable as they expand. Also it can be ob-
served that, the further inside the unit circle the poles are,
the faster the damping and, hence, the higher the stability.
Though Jury’s test enables a solution, it still involves tedi-
ous calculations, which are hence performed using Matlab
(R2009a). The Jury test for stability of a discrete-time sys-
tem is: Given a transfer function H(z) = b(z)/a(z), the
system is stable if and only if all the roots of a(z) =a,z" +
a,7""" +...+a, are inside the unit circle.

These two distinct regimes of inventory operations are
separately analyzed using Z-transform techniques. It is not-
ed that the dynamic behavior of the system often results in a
transition between the operational regimes, which are not
captured in such a separate analysis. However, useful in-
sights can be drawn from such a segregated analysis.

3.1 Sufficient inventory coverage ( Case 1)

For the case of sufficient inventory coverage (L, <S,_,),
it is assumed that there is always sufficient inventory cover-
age to meet the desired shipments. The coefficients a, to a;
refer to the coefficients of Eq. (3) and yield the following
equation:

a(z) =72 +[97° + (=5 +ag +0) 712" +[277 +( 36 +
Qag +90)7° + (10 —46 —dag +6ag )7 12 +
[27 +( =81 +27ag +270) 7 + (54 =27y 276 +
90ag )7 +( =10 +60 +6ay —30agy )7 17 +
[ =54 +27a5 +270 + (81 —54ay —5460 +276ag )T +
(=36 +27ag +2760 - 186ag )7 +
(5-40 —4ag +300y) 7 12 +27 = 27ag - 276 +
270ag +( =27 +270g +270 -27600 ) T +
(9 -9ag, -96 +990£5L)7'2 +(-1+60+4ay _QO‘SL)T3

Plotting this function on the parameter plane yields Fig.
1, which shows the boundary of stability for different g and
ag, in the production-inventory system when 7 =3. In Fig.
1, the gray area refers to the common stable region of two
cases. It illustrates the stable region (black area plus gray
area) on the parameter plane for case 1. The system is guar-
anteed to be stable when the values of ag and « are re-
stricted to the stable region.

3.2 Insufficient inventory coverage ( Case 2)

For the case of insufficient inventory coverage (L, >
S,_,), it is assumed that there is not sufficient inventory
coverage to meet the desired shipments. The coefficients q,
to a, refer to the coefficients of Eq. (4) and yield the fol-

lowing equation:

2.5

Instable region

Stable region

i / Instable region
table region
0 81

Fig.1 Stable and instable regions for two cases

a(z) =7 +[97 +( =S5 +ag +O) 712 +[277+( -36 +
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Mg +( -27 +2Tag +276 =270y )7 +(9 —9ag, —
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27 o

Fig. 1 illustrates the stable region (light gray area plus
gray area) on the parameter plane for case 2. The system is
guaranteed to be stable when the values of a¢ and «y, are re-
stricted to the stable region. According to the numerical
analysis, the stability of two operation regimes depends on
two parameters oy and ag . Meanwhile, the smoothing con-
stant § for demand forecasting has no effect on the stability
of the control system.

4 Supply Chain Stability and Bullwhip Effect

Now, it is important to present the dynamic behavior of
the original nonlinear system in response to time-varying
system inputs. It is of interest to validate the applicability of
such a separate analysis when the system switches from one
operational regime to another. To see if mode instability or
stability impacts the bullwhip metric, we calculate the bull-
whip effect. The delays and the nonlinearity in the supply
chain model result in the bullwhip effect. The bullwhip
effect (BWE) is quantified as follows:

var( P)
var(L)

BWE = (5)
To find the numerical results of the bullwhip effect calcu-
lated in Eq. (5), we rely on a simulation approach. As be-
fore, the parameters for forecasting demand do not affect the
stability of the system, but they influence the bullwhip
effect in the control system. Without loss of generality, we
set 6 =0.5, r =3. Two types of demand patterns are consid-
ered, i.e., a step input function and a random function.

4.1 Step input demand

Our simulations are designed to mimic the behavior of the
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beer game. In the first four weeks, the demand of the cus-
tomers is four units per week. In week five, the demand in-
creases to eight units per week and then stays constant at
eight units per week for the rest of the simulation.

Fig.2 and Tab. 1 highlight six possible designs that are to
be used as test cases of the stability criteria via the system
response to step demand input for various settings of ag and
ag . It can be seen that the actual system clearly demarcates
itself into stable and instable regions. Some of the most in-
teresting results are obtained:

T E
g £
A~ 0 1 1 1 1 ] A~ 1 1 1 ]
0 20 40 60 80 100 40 60 80 100
Time Time
(a) (b)
.520 .520
210/ S0
g £
A~ 0 1 1 1 1 ] A 0 1 1 1 ]
0 20 40 60 80 100 0 20 40 60 80 100
Time Time
(e) (d)
éZO— “22
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Elo '§1
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Time Time
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Fig. 2 Production release rates for different settings of ag
and ag . (2) a5 =0.2, ag =0.3; (b) ag =0.7, a5 =1.3; () ag
=0.5,ag. =1.3; (d) ag=1.4, ag =0.6; (e) ag =1.2, ag =
0.3; () ag=0.4,aq =1.5

1) When (ag, ag ) is in a common stable region (g =
0.2 and oy, =0.3; a5 =0.7 and ag =1.3), it can be ob-

served that, the further inside the unit circle the poles are,
the faster the damping, and, hence, the higher the stability.
Meanwhile, the less response time to a stable condition is,
the further inside the unit circle the poles are. In the initial
stage, higher values of oy and ag can induce the amplitude
of variation in production ordering. In the stable region, the
decision makers choose the smaller values in the stable re-
gion to make the production ordering stable at 8 units quick-
ly. Therefore, the actual system is stable.

2) If (as, ag ) is in the stable region of one case, and in
the instable region of other cases(ag =0.5 and ag =1.3;
ag =1.4 and ag =0.6), the system response is in fluctua-
tion, such as periodic fluctuation. The actual system is in-
stable. When the value of « is lower than that of «g , the
response is less volatile. But, otherwise, the response is
much more volatile. This can be a reference for making
strategic decisions.

3) When (ag, ag ) is in instable regions of two cases (ag
=1.2 and ayq =0.3; a3 =0.4 and ag =1.5), the system
produces an instable response, such as periodic fluctuation,
chaos, bifurcations, and so on.

4.2 Random demand

In particular, we assume that the customer demand fol-
lows a normal distribution with an average of 10 units and
standard deviation of 3 units. We simulate each scenario 100
times and calculate the average values of the simulation re-
sults. And the initial inventory level is set to 8 units and
each simulation run is 1 000-period long.

Tabs. 2, 3 and 4 highlight ten possible designs in Fig. 1
that are to be used as test cases of the stability criteria via
sample time domain responses to normal demand input,
where S/1 denotes stable/instable, and BWE denotes the
bullwhip effect. When BWE is greater than one, it means
that there is a bullwhip effect.

Tab.1 Stability response in operational regimes and actual system

Operational regimes

Decision making (ag, agy )

and actual system (0.2,0.3) (0.7,1.3) (0.5,1.3) (1.4,0.6) (1.2,0.3) (0.4,1.5)
Sufficient inventory Stable Stable Instable Stable Instable Instable
Insufficient inventory Stable Instable Stable Instable Instable Instable
Actual system Stable Stable Instable Instable Instable Instable
Tab.2 Stability response and bullwhip effect in stable regions
Decision making (ag, agp )
Operational regimes
and actual system (0.2,03) (0.9,0.8) (0.1,0.9) (0.9,0.4) (0.7,1.3)

S/1 BWE S/1 BWE S/1 BWE S/1 BWE S/1 BWE

Sufficient inventory S 1. 67 S 9.30 S 8.89 S 7.08 S 42. 89
Insufficient inventory S 0.91 S 7.59 S 19. 87 S 6.07 S 26. 36
Actual system 1.70 11.18 10. 06 12.95 39.97

Tab.3 Stability response and bullwhip effect in stable and instable regions
Decision making (ag, agp )
Operational regimes
and actual system (1.2,1.3) (1.2,0.7) (0.3,1.2) (0.9,1.5) (0.9,0.2)

S/1 BWE S/1 BWE S/1 BWE S/1 BWE S/1 BWE

Sufficient inventory S 29. 64 S 15. 14 I 74.38 I 118. 02 I 121. 69
Insufficient inventory I 25.94 I 11.72 S 71.56 S 53.80 S 124.91
Actual system 30.01 19.78 74. 69 106. 13 335.92
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Tab.4 Stability response and bullwhip effect in instable regions

Decision making (ag, agp)

Operational regimes

and actual system (1.1,1.6) (0.1,1.2) (1.2,0.3) (0.6,1.7)
S/1 BWE S/1 BWE S/1 BWE S/1 BWE
Sufficient inventory I 114. 56 I 6.91 x10° I 2.28 x10° I 1.45 x 10"
Insufficient inventory I 34.63 I 1.63 x10° I 1.46 x10° I 1.03 x 10"
Actual system 99.13 1.31 x10° 2.30 x 10° 1.26 x 10"

If o and g, are chosen such that they satisfy the stability
conditions of the two cases in Fig. 2, too small values of
(ag, ag ) still induce the bullwhip effect. The bullwhip
effect increases as the two parameters increase. It coincides
with the results in section 4. 1. Increasing or decreasing val-
ues which are given to the inventory and supply line has lit-
tle effect on the bullwhip effect. But, when one of the two
parameters is greater than one, the bullwhip effect suddenly
increases. This implies that the stability of the system can-
not represent low bullwhip effect.

Tab. 3 shows that, if two parameters are located in the
stable region of sufficient inventory coverage, and in the in-
stable region of the insufficient inventory coverage (ag =
1.2 and ag, =1.3; ag =1.2 and ag =0.7), the bullwhip
effect is relatively small. But, when the parameters are lo-
cated in the instable region of case 1 and the stable region of
case 2 (ag =0.3 and ag; =1.2; g =0.9 and o, =1.5; ag
=0.9 and oy =0.2), the bullwhip effect is high (100 or
so). This implies that when the system operates under suffi-
cient inventory coverage, the actual system is relatively sta-
ble. Meanwhile, the higher value of a4 can induce the bull-
whip effect of two operational regimes and the actual sys-
tem. To make the actual system stay in sufficient inventory
coverage, the decision maker can make the initial inventory
level higher. Decreased values should be given to supply
line levels, as long as the chosen ag and «y, satisfy the sta-
bility conditions in the sufficient inventory case.

If a5 and ay are chosen such that they satisfy instable re-
gions of sufficient and insufficient inventory coverages in
Fig. 4, the bullwhip effect is high. We can also see that
when the two parameters are nearly the same (ag =1.1 and
ag = 1.6), the bullwhip effect is relatively low ( above
99). But, when the two parameters have great disparity,
the bullwhip effect is very high. When a4 =0. 6 and g =
1.7, the bullwhip effect is 1.26 x 10". When the system
operates under insufficient inventory coverage, the bullwhip
effect in the actual system is relatively low.

Comparing Tabs. 2 and 3 with Tab. 4, we can observe
that the bullwhip effect is still present when the system is
stable, but the value is much smaller than that when the sys-
tem is instable. To avoid system instability and a high bull-
whip effect, decision makers should carefully select the ad-
justment parameters for inventory discrepancy and supply
line discrepancy to make g and ag stay in common stable
regions. It is hence concluded that the proposed piecewise
linearization based stability analysis approach is a valid ap-
proximation to the analysis of production and inventory or-
dering systems with nonlinearities.

5 Conclusion

This paper focuses on analyzing the stability of a produc-

tion-inventory system using difference equations and Z-
transforms. The results of theoretical analysis and numerical
study indicate that the bullwhip effect is relatively low when
the system is stable and a careful choice of decision parame-
ters can improve the financial performance of the system. In
order to effectively implement a production-inventory sys-
tem, the supply chain partners have to align their production
order policies and forecast methods. Finally, guidance for
the selection of parameters to guarantee system stability is
presented. The research can be extended to three or more
echelon-supply chains, where more complex behaviors such
as periodicity, quasi periodicity, chaos, bifurcations and
others may exist, creating a large space for researchers to
adopt various methods and generate more insights.
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