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Gauge dependence of chiral condensate and fermion mass
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Abstract: Based on three-dimensional quantum electrodynamics
theory, a set of truncated Dyson-Schwinger (D-S) equations are
solved to study photon and fermion propagators with the effect of
vacuum polarization. Numerical studies show that condensation
and the value of fermion mass depends heavily on how the D-S
equations are truncated. By solving a set of coupled D-S
equations, it is also found that the fermion propagator shows a
clear dependence on the order parameter. The truncated D-S
equations under unquenched approximation are used to study the
mass-function and chiral condensation of the fermions. The
results under the unquenched approximation are clearly different
from the ones under quenched approximation. With the increase
in the order parameter, the fermion condensation in the
unquenched approximation decreases when 0 < ¢ <5, while it
increases when ¢ >5. However, nothing like this is observed in
the quenched approximation, which indicates that there may be
flaws in the quenched approximations.
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he gauge field plays an important role in theoretical

T physics. In theoretical physics, gauge symmetry re-
flects the fact that all the physical values should be inde-
pendent of the gauge parameters. In the perturbation gauge
theory, the results respect these requirements at every level
of approximation, but this has not been achieved in general
in the nonperturbative theory. To indicate the physical val-
ues in the strong coupled system, one should resolve Dyson-
Schwinger ( D-S) equations. Since the involved fermion-
boson vertex is unknown, these coupled equations have to
be truncated and some symmetry of the system is destroyed.
A previous work showed the gauge dependence'' by trun-
cated D-S equations where the quenched approximation was
adopted. Therefore, it is interesting to investigate the gauge
dependence of physical values with different truncated
schemes for D-S equations which can be solved self-consist-
ently.

Quantum electrodynamics (QED,) in (2 +1) dimensions
with massless fermion as a field-theoretical model has been
extensively studied in recent years. It has many nonpertur-
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bative features, such as confinement™ and dynamical chiral

symmetry breaking (DCSB) in the chiral limit”™. More-
over, it is superrenormalizable, so that it is not plagued
with the ultraviolet divergences which are present in QCD,.
Consequently, QED, can be used as a toy model to study
some nonperturbative phenomena. QED, is also relevant to
theories for some realistic microscopic models in condensed
matter physics. Especially, since the discovery of the high-
T, superconductivity, QED, has received more attention. It
is widely accepted that QED, with N flavors can be regarded
as a possible effective theory for high-7', superconductivity
(HTSC) in doped cupratesm. Therefore, the “simple”
gauge theory might be an admirable model to investigate the
problems proposed in this paper.

The fermion condensate is a low energy nonperturbative
phenomenon, because QED, is asymptotically free and only
in the infrared region is the gauge interaction strong enough
to cause fermion condensation. This condensate in quantum
chromodynamics in four dimensions is widely believed to
account for the pion. Since the fermion mass is relational to
the condensate, the gauge dependence of fermion conden-
sate and the mass in this model is studied.

1 Dyson-Schwinger Equation for Propagators

The Lagrangian for the massless fermion in general covar-
iant gauge in the Euclidean space can be written as

L:¢w—mm¢+%4;+L
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where four-component spinors for the fermion are used.
This chiral symmetry can be dynamically broken by genera-
tion of a nonzero mass. In this formulation, there can also
be a parity-breaking mass term, which conserves the chiral
symmetry, but such a mass is not dynamically generated.

From Lorentz structure analysis, the inverse fermion
propagator can be written as

S™(p) = iypA(p’) + B(p") (2)

where A(p®) is the wave-function renormalization and is di-
mensionless; B(p’) is the fermion self-energy which has the
dimension of mass.

The full photon propagator with covariant gauge is given
by

(0,A4)° (1)
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where IT(g”) is the vacuum polarization for the photon and
£ is the gauge parameter.
The full inverse fermion propagator and the full photon
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propagator satisfy the following Dyson-Schwinger equation
(DSE):

S'p) =S (p) +

3

k
Y, 5(R) L (p,

d
) DD, (p ~ k)
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where S, '(p) is the bare inverse propagator for the massless
fermion; I',(p, k) is the full fermion-photon vertex and is
reduced to y, in rainbow approximation. However, using
this tensor, Ward-Takahashi identity ( WTI) is destroyed.
Ansatze, beyond rainbow approximation, should be intro-
duced.

DSE:s for the photon and fermion propagator form a set of
coupled equations for three scalar functions if we know the
full fermion-photon-vertex I', ( p, k). Unfortunately, al-
though several works have attempted to resolve the prob-
lem, none of them is completely satisfactory.

In this paper, adopting reasonable approximation for the
full vertex function, we employ several ansatzes to obtain
the availably truncated DSEs. For the reason of simplicity,

we choose the following ansatze'®
L. (p. k) = flA(p"). A(K))y,

where the form of function I', (p, k) is: y,, [A(p®) +
A(kz)]yV/Z, or A(pz)A(kz)'yV. The first one is the bare
vertex. This structure plays the most dominant role in the
full vertex in the high energy region and the full fermion-
boson vertex reduces to it in large momentum limit. The
second form is chosen from the BC-vertex. Previous works
show that the numerical results of DSEs employing the
choice are as satisfactory as those of the DSEs employing
BC and CP vertices which are obtained from WTI and multi-
plicative renormalizability'”’. Since the numerical results
obtained using this ansatze coincide very well with earlier
investigations, we choose the third one. So it is reasonable
to adopt those ansatzes to investigate our problems, though
those ansatzes destroy WTI.

Form Eq. (2) and Eq. (4), we obtain the equations satis-
fied by A( pz) and B( pz) in those ansatzes,

(5)
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where the notation Tr denotes trace over the Dirac indices.
In principle, there are two solutions for the above equa-
tions, the Nambu-Goldstone solution (B(pz) #0) and the
Wigner solution (B(p°) =0). If Egs. (5) and (6) have on-
ly the trivial solution (the Wigner solution), the fermions
will remain massless and DCSB will not occur. If besides
the trivial solution, it has a nontrivial solution (the Nambu-
Goldstone solution), then the original massless fermion will
acquire a nonzero mass and chiral symmetry will be broken
spontaneously.

In addition, the DSE satisfied by the photon vacuum po-
larization tensor is written as

T S(k)y,S(q + k)y, f[TA(P). A(K) 1]
(8)
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Using the relationship between the vacuum polarization
11,(q") and I1(q"),
,(q) = (4,

- q,q,)11(q") 9

we can obtain an equation for [T(¢*) which has ultraviolet
divergence. Fortunately, it is present only in the longitudi-

nal part. One can remove this divergence by applying the
projection operator
P, =, -3%% (10)
q

and obtain a finite vacuum polarization.

Finally, the important parameter & is involved. From the
above ansatze for the full vertex and setting ¢’ =1, the cou-
pled DSEs for the fermion propagator and photon vacuum
polarization in covariant gauge reduce to the following:

L &k A(kz)[Z(l—f’)( ) (kq)/q" + £'ph/q’] 2
AP =1+~ A(K 11
(p) p2f(2’n’)3 qz[Az(kz)kz (k)][1+H(q)] fLA(p ) (k)] (11)
3 2 2 2 ’
B(pz) =f dk3 zf[zA(Pz):zA(k)z]Bz(k)(2+§)2 (12)
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nq) =5 LA(P") . A(k 13
(q) qZJ(Zw)3[A2(kZ)kZ +Bz(k2)][A2(p2)p2 +Bz(p2)]J[ (p"), A(K) ] (13)
where p=g + k and ¢ =¢[1 +II(¢’)]. II(q") from Eq. m(p?) _B(p) (14)
(12) is apparently affected by the parameter (2 +¢') and is p) = A(pY)
proportional to the fermion self-energy, in the sense that co- o ) "
variant gauge alters the coupling constant in this framework. ~ and the condensate is trivially obta13ned by ,
Qne expects that the self—epergy can increallse with the accre- () = Te[S(x=0)] =4 dp S B SP ) _
tion of £. In the next section, the numerical results for the (2m)" A (p)p” + B (p”)
influence of ¢ on the fermion mass and condensate are giv- (15)

en, where the fermion mass is defined as
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2 Results

First, we consider the DCSB phase, i.e. Eq. (12) has a
solution B(p*) #0. From Eq. (15), it can be found that
chiral symmetry of the system is broken where the originally
massless bare fermion will acquire a dynamical mass through
nonperturbative effects.

The task now is to obtain A(p°) and B(p*). We numeri-
cally solve the three coupled equations (11) to (13). Start-
ing from A(p*) =1, B(p*) =1 and IT(q*) =1, we iterate
the three coupled equations for any ansatze until all the three
functions converge to a stable solution, and the typical be-
haviors of the mass functions m (p*>) and IT(g°) in the
DCSB phase for several ¢ are plotted in Fig. 1. In the case
of £ =0, the choice of a covariant gauge is called as a Lan-
dau gauge which has frequently been adopted in previous
works. Another choice is the Feymann gauge where £ = 1.
The others are chosen to see how much the results depend
on our particular choice.
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Fig.1 Typical behavior of m(p*) and IT(g’) for several ¢ for
ansatze 2. (a) m(p?);(b) II(q4*)

Generally, using the above explicit solution, we find
from Fig. 1 that the two functions decrease with p* and ap-
proach zero as p’—oo for all £ and we also observe that, for
any choices of covariant gauge, the two functions are almost
constant in the infrared region while the functions behave
like m(p*)—1/p*, and I1(¢*) o< 1/q in the ultraviolet re-
gion. From Fig. 1(b), it can be seen that the infrared val-
ues of the two functions apparently decrease with £ increas-
ing, but B(p®) is affected apparently by the choice of co-
variant gauge in all the energy region, while IT(g") is af-
fected little only in the high energy region.

In the following, we shall employ our numerical results to
study the influence on fermion condensate in QED,. First,

we recall some known results in the literature. The Lagrang-
ian of massless QED, is chirally symmetric due to the ab-
sence of the bare fermion mass term m, yufr, but chiral sym-
metry may be broken spontaneously when a fermion mass is
generated dynamically. Since the condensate is defined via a
fermion propagator, it should change with £. Based on the
bare vertex, the trend of function (yn}), is shown in Fig. 2.

10
8 -
T
S
N 6k
>
S
~ —*— Bare
4t —=— Ansatze 2
—— Ansatze 3
2 1 ]l
0 5 10 15
3

Fig.2 Gauge dependence of the fermion chiral condensate

The condensate decreases with £ increasing when 0 <¢ <5
and increases with covariant gauge for £ >5. Nevertheless,
the condensate alters quickly from the Landau gauge to the
Feymann gauge, but slowly in the right of Fig.2. Because
of the complexity of QCD, rainbow approximation is wildly
used in hadron theory where Landau and Feymann gauge are
adopted. Comparing two condensates for the two gauges,
we find that the value of the condensate at Landau gauge
(ynp) is greater than the corresponding value at Feymann
gauge (up) . (yay), enlarges about 1.5 times more than
)

Beyond rainbow approximation, using another two rea-
sonable ansatzes for the full vertex, we obtain the values of
condensate for a range of £, and also plot them in Fig. 2.
By all the appearances, based on ansatzes 2 and 3, the trend
of condensate about ¢ is generally incremental and is appar-
ently different from that obtained above. However, the D-S
equation with the two ansatzes gives the smaller value of
condensate than that with a bare vertex at £ =0. Near the
Landau gauge, the condensate obviously increases with &
and the value is greater than that obtained when we use a
bare vertex for £ >0. 1.

We expect that this difference due to different choices of
covariant gauge may qualitatively change the results in
gauge theory. These can also be derived by Landau-Khalat-
nikov-Fradkin transformations. Nevertheless, no phase tran-
sition occurs, though the values of B(p”*) and IT(q°) in
low energy and condensate all change with ¢ altering for
each ansatze.

From the above, we see that the two physical values all
depend on the gauge parameter for any truncated scheme. In
rainbow approximation, the bare vertex is compatibly used
only in the high energy region, but the condensate and dy-
namical fermion mass is the low energy phenomenon. So it
is obvious that the physical values cannot be obtained.
However, the other two ansatzes, beyond bare vertex, are
adopted. One of them is considered to play the dominant
role in the BC vertex, whereas (yuf) increases with ¢ The
results show that one also cannot obtain real physical param-
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eters by those familiar truncated schemes since the tensors
destroy the symmetry of the system. Moreover, from Fig.
2, the condensate obtained in ansatze 2 alters more rapidly
than that in rainbow approximation. This result implies that
the ansatze which is obtained only from WTI is incompetent
for the full fermion-boson vertex.

3 Conclusion

We investigate the influence of the vacuum polarization
on the photon propagator, in massless QED,, using the
truncated Dyson-Schwinger equations for the fermion and
photon propagators with a range of the choices of covariant
gauge. Numerical results show that the values of condensate
and fermion mass depend on the truncated scheme for the D-
S equation. Based on the finite coupled equation, it is also
found that the functions of the fermion propagator apparently
depend on £, but the boson propagator is only in the infrared
region. Since QED, is nonperturbative, the difference in low
energy can alter numerical results. With the increase in £, the
fermion condensate decreases in bare vertex for 0<<¢ <5 and
increases beyond rainbow approximation for all £.

Since the condensate should be gauge invariant, it is nec-
essary to adopt a fitter fermion boson vertex which keeps the
symmetry of the system to study a nonperturbative system.
After investigating the previous works, these studies appear
to suggest that the Landau-gauge boson propagator is finite
and nonzero at ¢° =0. This is consistent with an analysis of
an approximate D-S equation for the boson vacuum polariza-
tion using the gauge technique before we find the satisfied
ansatze for the full vertex; the Landau gauge should be
appropriate. Compared with unquenched QED,, quenched
approximation little affects the critical behavior at familiar

covariant gauge in nonperturbative systems. In addition, al-
though the truncated schemes destroy the WTI, our results
show that gauge dependence in unquenched QED; is partly
different from that in quenched QED,.
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