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Existence for positive steady states of an eco-epidemiological model
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Abstract: An eco-epidemiological model with an epidemic in the
predator and with a Holling type II function is considered. A
system with diffusion under the homogeneous Neumann boundary
condition is studied. The existence for a positive solution of the
corresponding steady state problem is mainly discussed. First, a
prior estimates (positive upper and lower bounds) of the positive
steady states of the reaction-diffusion system is given by the
maximum principle and the Harnack inequation. Then, the non-
existence of non-constant positive steady states by using the
energy method is given. Finally, the existence of non-constant
positive steady states is obtained by using the topological degree.
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I n this paper, we study a predator-prey system with an
epidemic in the predator '''. By the following scaling
form,

X=u,S—>u,, I—u,

the system takes the form

dt_u’(r Ku‘_1+bul)

du, eau,

e I _D _ 1
dr “2(1+bu1 b, 3”3) ()
du,

dr =u,;(Bu, - D,)

where r, K, a, b, e, B, D, and D, are positive constants.

Now, if the predator and prey are confined to a fixed
bounded domain (2 in R" with a smooth boundary, then their
densities are spatially inhomogeneous. From (1), we con-
sider the following reaction-diffusion system,

ul,—dlAul=ul(r—%ul—1T/Zu) xef), t>0
1

eau,
u2,—d2Au2=u2(m—D] -BMS) xel, 150

1
(2)

Uy, — dyAuy = uy(Bu, - D,) xef), t>0
%=%=%=0 xead >0
a9 v ’
u;(x,0) =0 i=1,2,3;xe2
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where v is the outward unit normal vector of the boundary
dL2. Denote u =(u,, u,, u3)T.

The existence of positive steady-state solutions has been
studied by the degree theorem and the bifurcation technique
in many works">™ for reactive diffusion predator-prey sys-
tems.

1 A Priori Estimates of Positive Steady States

The main purpose of this section is to give a priori posi-
tive lower and upper bounds for the positive steady states of
(2). The corresponding steady-state problem of (2) is the
elliptic system,

-d,Au, =G,(u) xel)

-d,Au, =G,(u) xell

-d;Au, = G,(u) xel) (3)
J J 0

“ =ﬁ:i=0 xe ol

For convenience, we shall write A instead of the con-
stants (r, K, a, b, e, B, D,, D,). We use two proposi-
tions from Refs. [9 —10]. In this paper, by the classical so-
lutions, we consider solutions in C*(£2) NC' (). The re-
sults of upper bounds can be stated as follows.

Theorem 1(upper bound) For any positive classical so-
lution (u,, u,, u,) of (3), if M, =0, then

max u, <K, max u, =M,, max u, =M, (4)
where
M = eu, K . erk
T d, 4D,
_euwK erd,K cad,K> ark® D,

*=74, Taap, 4D, T4DD, D,

L ay su | r- Lu
K" +bul) = ( K ‘)’
the first result easily follows the maximum principle. Then
let w = ed,u, +d,u,, we can conclude that

xell }

xe ol

Let w(x,) = max w(x). By the application of the maxi-

Proof Since u, (r—

- Aw :eu,(r—%ul) - D,u, — Bu,u,
d,w=0

mum principle, it yields

erk

D u,(x,)) < 4

Consequently,
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dzm?azlx uzsmrallx w(x) =w(x,) [d,») x[d,, ©) x[d,, o). Leti—o in (9), and we
obtain that
and hence
r au
[y o
Then, let u =d,u, +d,u,, by the same way, we obtain eau (10)

max u,(x) <M,
n N N

Theorem 2 (lower bound) Let A, d|, d,, d, be fixed
positive constants. Assume that (d,, d,, d,) e
[d,®) X[d,,®) x[d;, =), and

D
k-Kay ! (5)

N N
r " ea-bD,

Then there exists a positive constant C = C(A, d,, d,, d,),
such that every positive classical solution (u,, u,, u,)of (3)
satisfies

m{%n u,(x) >C i=1,2,3 (6)
Proof Let
¢ (%) =d,’l(r—%ul - :l—ulju,)
c,(x) :dz_l(le:lzlul -D, —,8143)

c,(x) =d; ' (Bu, - D,)

Then, in view of (4), there exists a positive constant
C(d, A) such that [, |, lle,ll.. lle; |l <C, if 4,, d,, d,
=d.

The Harnack inequality in Ref. [9] shows that there exists
a positive constant C, =C, (d, A) such that

mlzllxuigC*minu[ i=1,2,3 (7)

0
Now, on the contrary, suppose that (6) does not hold.
Then there exists a sequence {d,,, d,;, d,; };-, with d,,, d,,, d,,
eld,») x[d,, ) x[d,, ») such that the correspond-
ing positive solutions (u,;, u,;, u,;) of (3) satisfy

max u,,—0 or max u,—0 or max u,,—0 i—oo (8)
Integrating by parts, we obtain that
r auy;
i P dx =0
Lul,[(r K" 1+bu1i)]
eau,,
. "~ _D, -Bu, ||dx=0 9
jﬂu%[(l_'_bu” 1 Bu3r)]

fuw,[(ﬁuz, D,)1dx=0

for i =1, 2, .... The standard regularity theorem for the el-
liptic equations yields that there exists a subsequence of
(u,;, uy;, uy;), which we shall still denote by (u,;, u,,, u,;),
and three non-negative functions u,, u,, u, CZ(D) , such
that (u,,, uy;, uy,)—(u,, uy, uy) in [ C(£0) ]° as
By (8), we note that u, = 0 or u, =0 or u,=0. Moreover,
dy, dyy) — (d,, dy), dy e

[— o0,

we assume that ( d,,,

Luz[(l+blu,_ 1‘3”3)]dx=
J'ug[([u’uz D,)1dx =0

We now consider the following three cases.

Casel u,= 0. Since u,,—u, as i—o, then eau,,/(1 +
bu,;) - D, —Bu,, <0 on £, for all i>1.

Integrating the differential equation for u,, over (2 by
parts, we have

eau,,

0=d, ds =
x an avblz, s f!z (1 + bu”

D, —ﬁu3i)dx<0
which is a contradiction.

u,= 0, u, #0, on (), then the Hopf boundary

then Bu,,

for all i>1,
Case 2
lemma gives u, >0 on (2. Since u,—u, as i—w,
- D, <0 on (), for all i>1.
Integrating the differential equation for u, over (2 by
parts, we have

0= d3iLz d,uyds = L u,(Bu,, —D,)dx <0

for all i>1, which is a contradiction.

Case3 u,=0, u,#0, u, #0, on (), then the Hopf
boundary lemma gives u, >0, u, >0 on (2, and u,, u, satis-
fy

r au,

—-d,Au, = u, reeth T bu

Let u,(x,) =min u,(x), then, we have
n

. akM,
min #, (x) =K -
Integrating by parts, we have
eau,,
0=d, " a,uyds = f Mzz(l +bu -D, _Busi)dx>0
1i

for all i>1, which is a contradiction.

2 Non-Existence of Non-Constant Positive Solu-
tions

In this section we shall discuss the non-constant positive
solutions to problem (3) when the diffusion coefficient d,
varies and the other parameters d,, d,, A are fixed.

Theorem 3 Let d, and d, be fixed positive constants
and satisfy d ' u, >r, d; u, >BM, — D,. Then there exists a
positive constant F, = F,(A, d, , d; ), such that when d, >
d',d,>F, d, >d;, problem (3) has no non-constant pos-
itive solution.

Proof For any ¢ e L'(0), let
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- 1
- d 11
® ‘Q‘Lﬁpx (11)

Multiplying the differential equation (3) by u — u, and
then integrating over (2 by parts, we have

3
%[

24y = ZJH(G,.(u) -G () (u, —u) <

(r+e))(u-u)’+

Vou,

ea R _
(1 oD+ C +C2)(u2 i)
(Buy, =D, +&3)(uy —ity)’ (12)
for some positive constants C, = C! (A, d;, d; , &}), C, =

C,(A,d],d;, &), where g] and g, are the arbitrary small

positive constants arising from Young’s inequality.

In view of the Poincaré inequality """,

1 jﬂ(f—f)zs jﬂ | Vfltdx

where f is similar to (11), it follows from (12) that

3

3 [ diu -a) de<(r+e) (u-u)" +
0

ea
(1+b

(Bu, =D, +&;)(u, _ﬁa)z

-D, +C| +C§)(u2 —u,)’ +

(13)
Choose ¢/, g, >0 to be very small such that
d'w >r+e], dip, >BM, - D, +&,

Then (13) implies that u, = u, = constant, u, =u; = con-
stant, and u, = u, = constant if

d2>Fzépjl(%—Dl +c;+c2')

The proof is complete.
3 Existence of Non-Constant Positive Steady States

Let 0 =, <p, <u, <... be the eigenvalues of the opera-
tor — A on (2 with the homogeneous Neumann boundary
condition, and E(u;) be the eigenspace corresponding to u;
in C*(0).

In this section, we discuss the existence of non-constant
positive classical solutions to (3) when the diffusion coeffi-
cient d, varies and the parameters A, d,, d, are kept fixed.
When a,, <0, (1) has no non-constant positive classical so-
lutions'’. In view of this reason, we shall restrict this dis-
cussion to the case where a,, > 0.

First, we shall study the linearization of (3) at u. Define

X" ={ueX|u>00n40, i=1, 2, 3}
B(C)={u eX| C'<u,<Con{, i=1, 2, 3}
where C is a positive constant that is guaranteed to exist by

Theorems 1 and 2. Denote the matrix D =diag(d,, d,, d,),
then (3) can be written as

—~DAu=G(u) in Q, 3,u=0 on (14)

and u is a positive solution to (14) if and only if
F(w)Au—-(I-4A) "{D"'G(u) +u}=0in X"
We denote
H(d,,d,, d;;p) A det{ul -D'G (u)} =

1 _
dld2d3det{/.¢D -G ()}

(15)

By the similar arguments as in Ref. [ 12], we have the
following proposition.

Proposition 1  Suppose that, for all i=0, the matrix w1
-D'G, (@) is nonsingular.

Then index (F(+),a) =( -1)", where

y = D dim E(u,)

=0, H(dyy dy ds ) <0

To compute index (F (), &), we have to consider the
sign of H (d,, d,, d;; u). The direct calculation gives

det{uD - G, (@) } = A(d,:p)

A(dy; )

3

lim

dioo

= dZIu’Z(dll‘l’ -ay)

We can establish the following proposition.

Proposition 2 There exists a positive constant D,  such
that when d, =D, , the three roots u,(d,; d,,d,), i=1, 2,
3 of A(d,;u) =0 are all real and satisfy

l}ilgﬁ](d3;d],d2) ‘ :,Uvz(d.z;dl’dz) =0

L a, (16)
lim i (d;3dy, dy) | =—7>0

1
Moreover, when d,=D, ,

- ® <Iill(d3;dl’d2) <O</:L2(d3;d1’dz) <p«3(d3;d1’dz)
A(dy;p) <0ifpue( —w,u,(dysd,,d,)) U
(o (dy3dys dy) s ps(dys dys dy))
A(dy;u) >0 if we(m,y(dysd,, d,), o)
(17)

Then we discuss the global existence and bifurcation of
non-constant positive solutions of (3) with respect to the
diffusion coefficient d,, respectively, while the other pa-
rameters are fixed.

Theorem 4 Assume that all the parameters except d, are

fixed, a, > 0 holds, w; (d,, d,) e (u, u,, ) and

J
z dim E(u;) is odd. Then there exists a positive constant

i=1
D, such that, if d,=D,, (3) has at least one nonconstant
positive solution.
Proof By Proposition 2, there exists a positive constant
Z)3, such that when d, 27)3, (17) holds and
M </~13(d3;d1’d2) <M1 (13)

By Theorem 3, for 211 and 213 satisfying ,u,cAl, >7, W 213 >
BM, — D, there exists large 212 such that (3) has no constant
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positive solutions. In addition, since det{G, (&)} <0 and

limu, = o, it is easy to see that we can further choose d,,

i

212, and 213 to be so large that

H(d,,d,, d,; u,) >0 for all i=0 (19)

Now, we can claim that for any d, =D, (3) has at least
one non-constant positive solution. The proof, which is ac-
complished by contradiction, is based on the homotopy in-
variance of the topological degree. Suppose on the contrary
that the assertion is not true for some d, =d, =D,.

We fix d, =d,. Letd,(r) =td, +(1 -)d,, i=1,2,3 and
define D(t) =diag(d, (1), d,(t),d,(t)), ud-D 'G, (i)
for all i=0, and

i
dim E(u,;) = z dim E(u;) =an odd number

i20, H(d s T dii ) <0 =
Then by Proposition 1,

index(F(1; -),a) =(-1)"= -1 (20)

On the other hand, by Proposition 1, we obtain that

index(F(0; -),a) =(-1)"=1 (21)

In view of d, > D,, by Theorems 1 and 2, there exists a

positive constant C = C( D3, d,,d,, EZI, Eiz, 213, A) such that,
for all 0<r<1, the positive solutions satisfy 1/C < u,, u,,
u, < C. Therefore, F(t; u)#0 on 9B(C) for all 0<r<1.

By the homotopy invariance of the topological degree,
deg(F(1; -),0,B(C)) =deg(F(0; - ), 0,B(C)) (22)

Moreover, by our supposition, both equations F(1;u) =
0 and F(0; u) =0 have only the positive solution # in
B(C), and hence, by (20) and (21),

deg(F(0; - ),0,B(C)) =index(F(0; - ),m) =1
deg(F(1l; -),0,B(C)) =index(F(1; - ),m) = -1

This contradicts (22) and the proof is complete.
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