Journal of Southeast University (English Edition)

Vol. 27, No. 2, pp. 128 - 131

June 2011 ISSN 1003—7985

Ultra-wideband bilateral tapered slot-line antenna
fed by coplanar waveguide

Zhang Peng

Zhang Wenxun

(State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China)

Abstract: In order to broaden the bandwidth of a tapered slot-
line antenna ( TSA), a bilateral tapered slot-line antenna
(BTSA) with a new feeding structure of coplanar waveguide
(CPW) is developed. Based on the fact that the bandwidth
limitation of TSA mainly depends on its feeding structure, an
improved CPW-based feed structure etched on the backboard of
the BTSA is adopted to perform traveling-wave transition. Both
the simulation results and measurement data verify that the
proposed feeding structure results in “high-pass” frequency
response for antenna impedance matching. The voltage standing
wave ratio ( VSWR) is less than 2: 1 when the frequency is
higher than 3 GHz. The antenna gain exceeds 7 dBi with good
radiation patterns when the bandwidth is from 4 to 16 GHz.
This ultra wideband ( UWB) antenna with a compact size is
specially available for the electronic systems of counter-measure
and microwave imaging.

Key words: ultra wideband (UWB); tapered slot-line antenna
(TSA); feeding structure; coplanar waveguide (CPW)

doi: 10.3969/j. issn. 1003 —7985.2011.02. 002

T

ments'”’, mobile communication”™, and radio telescopes
due to its features of low profile, low cost, printed technol-
ogy in structure and with a wide frequency band and a mod-
erate gain in performance. For improving the properties of
the TSA, Langley et al. "' proposed an ultra wideband balun
broadening its impedance matching bandwidth, and Zhang
et al. ' proposed the grating loading to enhance its gain.
Now as a traveling-wave antenna, the TSA also receives
much interest for medical imaging'” due to its wideband fea-
tures and appropriate gains. The bandwidth for impedance
matching of the TSA depends on both the feed transition and
the slot termination™™". However, for an ultra-wideband
antenna, the realization of the bandwidth for impedance
matching is not enough, and the consideration of the band-
width for radiation pattern and gain is also very important.
The radiation properties of the TSA depend on the structural
parameters such as length, width, and taper profile, and the
effective dielectric thickness #, defined by the dielectric con-

he tapered slot-line antenna ( TSA) has been widely

. 1 .
used in phased arrays'', electronic counter measur-
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stant 7 and physical thickness ¢ of the substrate!”. In Ref.
[12], the optimum range of 7, normalized to the wavelength
in free space for qualified patterns is summarized as
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and its alternative form is
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where c is the velocity of light in free space. From Eq. (2),
it can be obtained that the frequency coverage f,, . /f... is less
than 6: 1.

Usually, the TSA is fed by a microstrip-line ( MSL)
crossed to the slot-line (SL) printed on the other side of the
substrate. The unavoidable structure of the open-circuited
MSL-stub and the short-circuited SL-stub results in addition-
al frequency sensitivity. On the other hand, a bilateral TSA
(BTSA) can be fed by a fin-line inside a rectangular
waveguide in millimeter waves'", which avoids the stub
structure but is inconvenient for lower frequency bands with
coaxial feed lines.

In this paper, a novel balanced feeding technique using
coplanar waveguide (CPW) is proposed. Its simulation and
measurement results are in good agreement. The frequency
coverage for impedance matching (VSWR less than 2: 1) of
the proposed antenna is 6. 6: 1, while the frequency cover-
age for good radiation patterns is 4: 1. So the common
bandwidth is 4: 1.

</ (2)

1 Antenna Design

The layout of an antenna prototype shown in Fig. 1 in-
cludes two parts: the CPW feeding structure etched on one
side of an FR4 microwave substrate (&, =4. 4 and ¢t =
1.6 mm) serves as a backboard'® " for suppressing the
backward radiation; and the bilateral tapered slot-line struc-
ture etched on two sides of a Duroid dielectric substrate ( &,
=2.2 and t=0.5 mm) serves as a radiator. The root of the
radiator is inserted into the central slits excavated in the
backboard and connected to the backboard by welding. The
exponential taper profile of tapered slot-line is defined as

y(x) = +[0. 156exp(0.06x ) — 0. 106 ] (3)

In addition, a pair of quarter-elliptical corner slots ( with
semi-major axis a and semi-minor axis b) are etched at the
base of both the upper-half and the lower-half of the radiator
for avoiding the currents directly flowing from the CPW
structure (central strip of the lower part and ground plane of
the upper part coated on the backside of backboard). The
CPW connects downward to an unbalanced coaxial feed
line, and forward to a balanced BTSA. In detail, its central
strip surrounded by a II-shaped slot connects to the lower-
half of the BTSA, and its ground plane at the upper-part
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Fig.1 Design prototype of CPW-fed BTSA. (a) Backboard; (b)
Assembly with BTSA radiator

connects to the upper-half of the BTSA. This feeding struc-
ture provides perfect function of balun without frequency-
sensitive discontinuity, and is designed for a 50 ) imped-
ance to avoid any transition to coaxial cable. It works in a
traveling-wave operation with a very wide bandwidth of im-
pedance matching.

Preliminary simulation results validate the effectiveness of
the CPW feeding structure. Then a set of optimized struc-
ture parameters are chosen from a great number of simula-
tion routines by using the CST microwave studio. The opti-
mized parameters are listed in Tab. 1.

Tab.1 Optimized values of design parameters

Parameters Size/mm
L, 93
L, 100
Ly 10
W, 60
w, 40
Ws 2
w, 3
Ws 0.35
W 6

a 27
b 20

2 Simulation Results and Measurement Data

The calculated current distribution on the radiator at 10
GHz is shown in Fig. 2. From Fig. 2, it can be seen that the
current density concentrates at the tapered edges of the slot-
line and then gives most contribution to the radiation; the
current density along the tapered slot-line decreases with dis-
tance far away from the feeding point.

Fig.2 The calculated current distribution at 10 GHz

An experimental prototype of the antenna (see Fig. 3) is
fabricated and tested. The curve of return loss vs. frequency
is measured by using an Agilent N5230A vector network an-
alyzer. The measurement data are in good agreement with
the simulation results as shown in Fig. 4, in which the
measured frequency coverage exceeds 6. 6: 1 (3 to 207
GHz), and the simulated coverage exceeds 4:1 (5 to 207
GHz) for VSWR less than 2:1 (S,, < —10 dB). The errors
in relative permittivity of FR4 substrate (4.4 +0.4) and im-
perfect fabrication (especially in the bonding process) result
in the discrepancy between the simulated and the measured
results.

(a) (b)

Fig.3 Fabricated prototype of CPW-fed BTSA. (a) Front view;
(b) Side view
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Fig.4 Simulated and measured S,

The simulated and measured curves of antenna gain vs.
frequency are also shown in Fig.5. The gain is higher than
6 dBi in the whole band and the peak value approaches
13.7 dBi. The radiation properties are measured in an ane-
choic chamber. The simulated and measured radiation pat-
terns in both E- and H-plane at4, 10, 16 GHz are compared
in Fig. 6, respectively. The antenna holds end-fire patterns
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Fig.5 Simulated and measured gain
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Fig.6 Simulated and measured radiation patterns. (a) 4 GHz; (b) 10 GHz; (c) 16 GHz
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