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Abstract: To resolve the completeness and independence of an
invariant set derived by the traditional method, a systematic
method for deriving a complete set of pseudo-Zernike moment
similarity ( translation, scale and rotation ) invariants is
described. First, the relationship between pseudo-Zernike
moments of the original image and those of the image having the
same shape but distinct orientation and scale is established.
Based on this relationship, a complete set of similarity
invariants can be expressed as a linear combination of the
original pseudo-Zernike moments of the same order and lower
order. The problem of image reconstruction from a finite set of
the pseudo-Zernike moment invariants ( PZMIs) is also
investigated. Experimental results show that the proposed
PZMIs have better performance than complex moment
invariants.
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M oment functions have been widely used in pattern rec-
ognition , edge detection”™™
and texture analysis' . Different types of moment functions
such as geometric moments, orthogonal moments, complex
moments and rotational moments are all useful tools in the
field of pattern recognition and can be used to describe the
image features. Among them, moments with orthogonal ba-
sis functions (e. g., Legendre, Zernike and pseudo-Zernike
polynomials) can represent the image by a set of mutually
independent descriptors, and thus have a minimal amount of
information  redundancy. Pseudo-Zernike =~ moments
(PZMs), similar to Zernike moments, possess the good
properties of orthogonality and rotation invariance. Since
PZMs contain (M +1)7 linearly independent polynomials of
order up to M, while Zernike moments have (M +1) (M +
2)/2 linearly independent polynomials due to the additional
constraints of p — | ¢ | being even, thus PZMs have better
feature representation capability. It is also proven that the
PZMs are more robust to image noise than the conventional
Zernike moments'" .

As noted by Ghorbel et al. "', the most important proper-
ties to be verified by the image descriptors are: 1) invari-
ance against some geometrical transformations ( translation,
rotation, scaling, etc.); 2) stability to noise, to blur, to
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non-rigid and small local deformation; and 3) complete-
ness. A set of invariant descriptors is said to be complete if
it satisfies the following property: two objects have the same
shape if and only if they have the same set of invariants "'
In the past, the study on the completeness of moment invar-
iants has attracted the attention of several research groups.
Flusser et al. """’ proposed a complete set of rotation invar-
iants by normalizing the complex moments. The construc-
tion of a complete set of similarity invariant descriptors by
means of some linear combinations of complex moments
was studied by Ghorbel and Derrode et al.'® "', In Ref.
[8], Ghorbel et al. aslo discussed the problem of image re-
construction from the complete set of moment invariants.
Because the complex moments are not orthogonal, they pro-
posed an approach to resolve the reconstruction problem by
exploiting the link between the discrete Fourier transform of
an image and its complex moments.

The goal of this paper is to propose a new method to
achieve a complete set of similarity invariants extracted from
pseudo-Zernike moments. We first establish the relationship
between the pseudo-Zernike moments of the original image
and those of the scaled and rotational images. Based on this
relationship, the complete set of scale and rotation invariants
can thus be achieved. We then investigate the image recon-
struction problem using a finite set of pseudo-Zernike mo-
ment invariants ( PZMIs).

1 Mathematical Background
1.1 Pseudo-Zernike moments

A two-dimensional PZM Z

Pq
of an image intensity function f(r, 6) is defined as'"'

of order p with repetition g
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where R

(1) is the real-valued radial polynomial given by

o1l

_ Ty 2p+1-k)! bk
R = 3 0 o T+ -0 (= Tal =0T

(2)

1.2 A complete set of complex moment invariants

Ghorbel et al. ™ proposed a complete set of both scale
and rotation invariants of complex moments given by

f -(p+9+2) _-i(p-9)8, [
CME,, = ;77 e 000 (3)

p-q

where 6, = arg (@) ,), I, = V@b, and qu;.q is a complex
moment of an image function f( r, §) defined as
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, 0) drdg P, q=0 (4)

v p+q+1 J(p q)a
d.o=f "

2 Method
2.1 A complete set of similarity invariants of PZMs

Eq. (2) shows that the radial polynomial R, (r) is sym-
metric about ¢, i.e., R, ,(r) =R,(r) for ¢ =0. Thus,
for the study of these polynomials, we can only consider the
case where ¢=0. Let p =g+ m with m=0, Eq. (2) can be

rewritten as

< 2g+m+1+k)! ,
R — _1 m-k ( q t]+1\_
gemag(T) IZ:,U( ) (m-Kk)!2q+1+k) (!
ch 't (5)
k=0
where
- 2g+m+1+k)!
q - _1 m-k ( q
e = =D 0 1 (2g + 1+ 8)1 (6)
Let U:;(r) = {R,,,q(r)s Rq,,l,,,(r), e, q+mq(r)} and
My = {7, " L"), we have
U,(r) =C,M;, (1) (7)

where C;, = (c},) withO<j<ismisan (m+1) x(m+1)

lower trlangular matrix whose element c{; is given by Eq.
(6). Since all the diagonal elements of C? are not zero,
matrix C? is non-singular, thus

M;(r) =(C;) 'U;(r) =D}U; (1) (8)

m

where D; =(d},) is the inverse matrix of Cj,. It is also an
(m+1) x(m+1) lower triangular matrix. The computation
of the elements of D? is described in the following proposi-
tion.

Proposition 1  For the lower triangular matrix C?, the

elements of its inverse matrix D? are given as

J =(2q+2j+2)i!(2q+i+1)!
M- 2q+i+j+2)!

(9)

Proof To prove the proposition, we need to demonstrate
the following equation,
k

ZC df/ =6,

(10)

For k =1, we have

“ g0 _
Chk di, =1

(11)

For [ <k, we have
k k
¢ @ _ ks (2g+kE+1+9)1(2¢ +20+2)
Leldi= 2 (=1 (k=s)!(s=D!(2q +s+1+2)!
k

(-D*Q2q+21+2) Y F(q,k Ls)

s=1 s=1
(12)
where

(-1)'Q2g+k+1+5)!
(k=s)1(s=D1(2q+s+1+2)!

F(q,k 1, s) = (13)

Let
(- Q2qg+k+1+5)! _
Gl ks s) = e T (s= D1 (2g+s+1+1)1
(k+1-5)(s-1)
(k-D2g+k+1+2) (14)
It can then be easily verified that
F(q,k 1,s) =G(q,k, I,s+1) -=G(q,k,I,s) (15)
Thus
k k
ZF(q,k,l,s) = Z[G(q,k,l,s+l) -G(q,k, 1,s)] =
s=1 s=1

G(q. k, 1,k+1) -G(q,k,1,]) =0

We deduce from Eq. (12) that
k
2 CZ,; =0
s=1

The proof is now complete.

Note that the proof of Proposition 1 is inspired by a tech-
nique proposed by Petkovsek et al "'

We now consider that the two images f and g have the
same shape but distinct orientation 8 and scale «; i. e.,
g(r, 6) =f(r/a, 6-p) and the pseudo-Zernike moment of
the image intensity function g(r, ) is defined as

I <k (16)

7 _g+m+1 2 1
q+m,q r1+m 11

211]

J’ f R, (ar)e J(’gf(r 0) rdrdo

e g(r,0)rdrdo =

0(2 *Jqﬁ‘]+m+l (17)

Let U!(ar) ={R, (ar),R,, ,(ar), .. R, (a))}

and M’ (ar) = {(ar)?, (ar)*", ..., (ar)”"}". It can be
easily deduced from Eq. (7) that
Ul(ar) =C!M! (ar) (18)
Otherwise,
M (ar) =diag(a’, o', .., (7, r LT =
diag(a?, o**', .., """ )M (1) (19)

Substituting Eqgs. (19) and (8) into Eq. (18), we obtain

U’ (ar) =Cldiag(a’, o', .., a”"")D.U (r) (20)

m

By expanding Eq. (20), we obtain

q+l q q
a C,., d/, k
=k

R, (ar) = ;qu(r) (21)

By Eq. (21), Eq. (17) can be rewritten as

< _ 2 gggt+tm+1
q+m. g =ae

m

m

2m .1 m
L J- ( ZR,I%,I(T“) z ! ;]nl d?L) Wf(n 0)rdrd0 =
I=k

*J(Iﬁ qtm+ 1 < q+l+2 & q Z 22
;)q_‘_k_'_] ;a du) q+k g (22)

Eq. (22) shows that the 2D scaled and rotational PZMs,
Z;,,.,» canbe expressed as a linear combination of the orig-
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inal PZMs Z{;+k, , With 0<<k<m. Based on this relationship,
we can construct a complete set of both rotation and scale
invariants PZMI’;W , Which is described in the following the-
orem.

Theorem 1 For a given integer g and any positive inte-
ger m, let

PZMI ., =

< S, g +m+1 o (

k=0 ¢ § m( z r ety :]n 1 dl!A) q+k,. q (23)
with 6, =arg(Z] ) and I', = ,/Z,,. Then PZMLI’ , is in-

variant to both image rotation and scaling.
Proof Eq.(23) can be rewritten in a matrix form as

PZMI’
I
PAML o2 e diag(q + 1, g 2, g +m+ 1) -
PZMI:-HII q
Cidiag( ;'™ , 7, ., 7" -
,
quq
;
Dfﬂdiag( 1 : 1 S 1 ) Zysig (24)
qg+1 qg+2 qg+m+1 :
f
Z#*’"x’l
Eq. (22) can be rewritten in a matrix form as
4
a9
e | = e Pdiag(q +1,g+2,..,qg +m +1) -
%,
C'diag(a’”, a'”, .., a'™"?)D" -
f
Z‘Iv‘]
f
diag( L, Lo L) e (25)
q+1 qg+2 qg+m+1 :
f
q+m, q

In particular, we have

Ir,=al', Z7, =

3 _-iBgf
B ae 7

s 26
6, = arg(Z: ) = arg(A'ePe) = ef—ﬂ} (20

&

Substituting Eqs. (25) and (26) into Eq. (24) and using the
identity D? C? =1 (I is an identity matrix), we obtain

m=—m

PZMI; |
g . .
PZMI‘“Z 1 |= e ediag(qg + 1, g +2, ....,qg +m +1)C? -
PZMI;+2/11 q
(q+2) —(g+3)/2 —(qg+m+2)/2
diag( "™, "7, ., T ) -
diag(af(qﬂ)’ a*(q+3), e af(q+m+2)) .
D ding(—— Lo
" q+1’q+2’m’q+m+1

g +m+1)C? -

m
q +m+2 q
. )D?! -

diag(qg +1, g +2,

q+2 q+3

diag(a’™, L.

,
Zq,q
f
diag( 1 , 1 ! )Z"*"" =
qg+1 qg+2 qg+m+1
f
le*’”q

e diag(q +1,q +2, ..
diag( [, I, ...,

.q+m+1)C! -
Ff—(q+n1+2)) .

z, PZMY
o !
diag( 1 ’ 1 5 1 )D‘Z, Zy ., PZMIW .
qg+1q+2 qg+m+1 :
. -
Zi]ﬁn, q PZMIq +lm, q
(27)
Thus, we have
PZMI,, = PZMU, (28)

The proof is now complete.

Using the same method to achieve the translation invari-
ance as described in Ref. [8], the origin of the coordinate
system is taken at the center of mass of the object.

It is easy to verify that the set of invariants is complete by
rewriting Eq. (24) as

,
79
zZ 0, 1
atba | = e™diag(q + 1,9 +2, ...,qg + m + 1) C,

Z/

q+m, q

f (a2 of (q43)/2 fo(q+mi2)/2y 1ya
diag(Z, , v Ly o s e Ly o )D?

PZMI |
diag( Lr 1 ) PZMIW | (29
q+1 qg+2 qg+m+1
!
PZMIW" .
Thus, we have
f _ c 0, ¢ + m + 1, < (g+1+2) !
Z//+mq - kz:oe q + k +1 ( v qu C d )PZMI(/H\ q
(30)

Eq. (30) shows that the set of invariants is complete.
2.2 Image reconstruction

Using the orthogonality property of PZMs, the image in-
tensity function f(r, 6) can be reconstructed from a finite
number M of PZMs as

Z Z ZI”/ I)(/ z 2 Zl’f/ l’fl ”9 (31)
Substituting Eq. (30) into Eq. (31) yields
ja(6+6) P + 1 .
ZZR’”’) ;‘q+k+1
( z F/q+l+2) ¢ )PZMI(M , (32)

Eq. (32) shows that the original image f(r, 6) can be re-
constructed from the complete set of PZMIs.

3 Experimental Results

In this section, several experiments are carried out to
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evaluate the complete family of similarity invariants intro-
duced in this paper using a set of gray-level images. The
proposed PZMIs are compared with the complete set of com-
plex moment invariants ( CMIs) presented in Ref. [8]. For
the experiments presented in this section, a set of eight ima-
ges (see Fig. 1) with a size of 128 x 128 is chosen from the
public Columbia Object Image Library ( COIL-100) data-
base'”. In order to contain the entire transformed image af-
ter transformation, the actual size of all the original images
is 204 x204 by adding some background pixels.

(g)
Fig.1 Eight objects selected from the COIL-100 database

Let p be the maximum order of CMIs, and let ¢y, (p) =
(CML, ,, CML, , .., CML, , .., CML, ) .

202 op The dimension

of ly,(p) is(p + 1)(p +2)/2 = 1. For comparison pur-
pose, we also define the vector i, (p) = (PZMI,,
PZMI, ,, .., PZML,, .., PZMI, ) for the proposed PZ-
MIs. The size of i), (p) is also (p + 1) (p +2)/2 - 1.
The relative error between the two sets of moment invariants
corresponding to an image f(x, y) and its transformed im-

age g(x, y) is defined as

_ e —¢t) |
E(f g =
e 1 () |

where || - || is the Euclidean norm.

(33)

3.1 Test of invariance

To test invariance with respect to rotation, eight images
shown in Fig. 1 were rotated by angles from 0° to 90° with
intervals of 5°, and a bilinear interpolation was used when re-
quired. The proposed PZMIs defined in Eq. (23) and CMIs
given in Eq. (3) of order up to p =5 were computed for all
152 images. Fig. 2 (a) shows the mean relative errors of
Ep(f,., g.), where f,(i=1, 2, ..., 8) denotes the eight images
shown in Fig. 1; g, is its rotated image. It can be seen from
Fig.2(a) that the relative error of PZMIs is lower than that of
the CMIs, whatever the rotational angle. We then evaluate
the invariance of PZMIs with respect to image scaling. Eight
images are scaled by a factor from 0.1 to 2 with intervals of
0.1, forming a set of 160 images. The mean relative errors
of PZMlIs and CMIs are depicted in Fig.2(b). It is clear that
the proposed PZMIs show better performance than the CMIs.
To test the robustness of the invariant family against noise,
we added to the same eight images a white Gaussian noise
with mean g =0 and standard deviations varying from O to 50
and a salt-and-pepper noise with noise density from 0 to
35%, respectively. It can be observed from Fig. 3 that, the

relative error increases with the increase in the noise level;
however, PZMIs are more robust to noise than CMIs.

5 =
.
=1
B4r —— CMIs
g —e— PZMIs
23r
3
[
=
2 L
g
=
1 -
0 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90
Rotation angle/(°)
(a)
0.351
0.30
50.25
e —— CMIs
£0.208 —e— PZMIs
<
£0.15
g
=0.10
0.05
0

(b)

Fig.2 Performance of the invariants to rotation and scaling. (a)
Ratation with different angles; (b) Scaling with different scale factors

0.6
—— CMIs
5+ —e— PZMIs

e

.
N
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Mean relative error
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=o0.2f
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1
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(b)

Fig.3 Performance of the invariants with respect to noise. (a)
Gaussian noise with different standard deviations; (b) Salt-and-pepper noise
with different densities
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3.2 Object classification

To further assess the performance of PZMIs and their ro-
bustness against noise, an object classification procedure
was conducted. We also used the eight images shown in
Fig. 1 as the training set. To obtain the testing set, each
image was rotated at angle o« e {0°, 30°, ..., 300°,
330°}, and scaled with scaling factor A e {0.5, 0.75, ...,
1.75, 2.0}, forming a set of 672 images. This was fol-
lowed by adding a white Gaussian noise with different stand-
ard deviations and a salt-and-pepper noise with different
noise densities. The minimum-Lance-Williams-distance
classification is used as the classification method. The
Lance-Williams distance between the two images f and g is
defined by their moment invariant sets ¢’ and o* as

A
T T e

where 1//k and ;(k=1, 2, ..., n) denote the invariants, n
is the total number of invariants used in the experiment and
| - | the magnitude of the complex number.

The classification rates using different moment invariants
of order up to 5 are summarized in Tab. 1. It can be ob-
served that: 1) The classification results are quite good
(100% ) for both methods in the case of noise-free; 2) The
classification rates decrease with the increase in the noise
level. However, the proposed PZMIs perform much better
than the CMIs whatever the noise and the noise level. Al-
though some images are highly corrupted, the classification
rates of PZMIs are still higher than 86% . But this is not the
case for CMIs. The reason is that the orthogonal PZMIs are
more robust to noise than the non-orthogonal CMIs'""

(34)

Tab.1 Classification rates of CMIs and the proposed PZMIs

in object classification %
Moment invariants CMIs PZMIs
Noise-free 100. 00 100. 00
Gaussian noise with STD of 10 95.09 98. 81
Gaussian noise with STD of 20 84.97 94. 64
Gaussian noise with STD of 30 66.07 87.65
Salt-and-pepper noise with noise density of 1% 87.05 93.30
Salt-and-pepper noise with noise density of 2% 80.95 90.77
Salt-and-pepper noise with noise density of 3% 72.47 86.76
Average rate 83.80 93.13

3.3 Image reconstruction

In this subsection, the first gray image in Fig. 1 with a
size of 128 x 128 is used. The sequence of reconstructed im-
ages using Eq. (34) with different values of M ( maximum
order moment invariants used in the reconstruction) is listed
in Fig. 4. Let f(x, y) be the original image and f(x, y) be
the reconstructed image. The following normalized mean
square error is used to measure the accuracy of the recon-
structed images.

) 2 Z[j‘(xry) _f(x,y)]Z
B 3 S Ay’

&

The reconstruction errors are also given in Fig. 4. It is
shown that good results can be obtained as the order of mo-
ment invariants increases, especially for M =60.

- | -

-
=

(a (b) (c) (d) (e)

- -
= | @

Fig.4 Image reconstruction of Fig. 1(a) with different M. (a) M
=20, £2=0.0304; (b) M=40, & =0.021 5; (¢c) M=60, & =0.019 0;
(d) M=80, &2 =0.0186; (e) M=100, £ =0.018 5

4 Conclusion

In this paper, we present a novel method to derive a com-
plete set of PZMIs. These PZMIs can be expressed as a lin-
ear combination of the original PZMs. The image recon-
struction from a finite set of complete similarity invariant
sets has been also investigated. The simulation results dem-
onstrate the invariance properties and discriminative capabil-
ities of the proposed descriptors.
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