Journal of Southeast University (English Edition)

Vol. 27, No. 2, pp. 154 - 158

June 2011 ISSN 1003—7985

Domain-based noise removal method
using fourth-order partial differential equation

Zeng Weili'

Tan Xianghua’

Lu Xiaobo®

(" School of Transportation, Southeast University, Nanjing 210096, China)
(2 School of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China)
p y g
(* School of Automation, Southeast University, Nanjing 210096, China)

Abstract: Due to the fact that the fourth-order partial differential
equation (PDE) for noise removal can provide a good trade-off
between noise removal and edge preservation and avoid blocky
effects often caused by the second-order PDE, a domain-based
fourth-order PDE method for noise removal is proposed. First,
the proposed method segments the image domain into two
domains, a speckle domain and a non-speckle domain, based on
the statistical properties of isolated speckles in the Laplacian
domain. Then, depending on the domain type, different
conductance coefficients in the proposed fourth-order PDE are
adopted. Moreover, the frequency approach is wused to
determine the optimum iteration stopping time. Compared with
the existing fourth-order PDEs, the proposed fourth-order PDE
can remove isolated speckles and keeps the edges from being
blurred. Experimental results show the effectiveness of the
proposed method.
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he use of the partial differential equations ( PDEs) for
T image denoising has become a major research topic in
the past few years. The PDEs include anisotropic diffusion
equations!"™, total variation models™ and curve evolution
equations'” . One of the most popular and successful meth-
odologies for image denoising is the use of the anisotropic
diffusion equations which was first introduced by Perona and
Malik'". Let u denote the image intensity function, ¢ the
time, and c(+) the conductance coefficient, and the follow-
ing second-order nonlinear diffusion model (the PM second-
order PDE) is considered.
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where V - and V denote the divergence and the gradient, re-
spectively. It is designed with an explicit goal of achieving
a good trade-off between noise removal and edge preserva-
tion. Although the PM second-order PDE and its variances
are better in image denoising, these methods tend to cause
blocky effects in processed images. In Refs. [7 — 8], it is
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noted that the PM second-order PDE is a second-order mod-
el. This feature guarantees its ability to reconstruct images
with discontinuities, but it is responsible for the block
effect.

An effective solution to this problem was introduced by
You and Kaveh'™ in which a fourth-order PDE is used for
noise removal. The YK fourth-order PDE replaces the gradi-
ent operator in the PM second-order PDE with a Laplacian
operator. Due to the fact that the Laplacian of an image at a
pixel is zero only if the image is planar in its neighborhood,
the YK fourth-order PDE attempts to remove noise and pre-
serve edges by approximating an observed image with a
piecewise planar image. Therefore, the denoised image ap-
pears less blocky and more natural than that processed by
the PM second-order PDE. However, the YK fourth-order
PDE tends to leave the processed images with isolated black
and white speckles which may be characterized as pixels
whose intensity values are either much larger or smaller than
those of their neighboring pixels. Although You and Kaveh
proposed using median filtering to process the denoised im-
age by the YK fourth-order PDE, the median filter can de-
grade the image to some degree. The main reason is that the
ordering process destroys spatial neighborhood information
and some structures.

In this paper, a novel fourth-order PDE is presented. The
proposed fourth-order PDE preserves the advantage of the
fourth-order PDE and avoids leaving isolated black and
white speckles. Moreover, the new method preserves fine
details, sharp corners, curved structures and thin lines. The
numerical experiments show that the proposed method can
outperform the other methods in terms of the quality of the
denoised image.

1 Fourth-Order PDEs

In recent years, a number of authors have presented the
analogous fourth-order PDE for image denoising'”"". The
theoretical analysis in Refs.[8, 11] shows that fourth-order
equations have advantages over the second-order equations
in some aspects. First, the fourth-order linear diffusion
damps oscillations much faster than the second-order diffu-
sion. Secondly, the second-order PDE evolves toward a
piecewise constant approximation in smooth regions. Unlike
the second-order PDE, the fourth-order PDE evolves toward
a piecewise smooth image if the image support is infinite. It
is well known that piecewise smooth images look more natu-
ral than the piecewise constant images'® . Therefore, the
block effects are reduced and the image appears more natural.

In Ref.[8], You and Kaveh proposed the following
fourth-order PDE,



Domain-based noise removal method using fourth-order partial differential equation 155

e VUTw) = -V ([PuhVw (@)

where V’denotes the Laplacian operator; J(+) is the flux
function; and the conductance coefficient ¢, (+) in the YK
fourth-order PDE is a function of the absolute value of the
Laplacian of the image intensity; that is
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where k >0 is the Laplacian threshold. A small k& will cause
slow diffusion within homogeneous regions, while a large k
leads to low contrast edges or textures to be smoothed out.
The plots of the conductance coefficient ¢, () and flux func-
tion J, (-) for different values of the Laplacian threshold k
are shown in Fig. 1. The YK fourth-order PDE replaces the
gradient operator in the PM second-order PDE with a Lapla-
cian operator. Due to the fact that the Laplacian of an image
at a pixel is zero only if the image is planar in its neighbor-
hood, the YK fourth-order PDE attempts to remove noise
and preserve edges by approximating an observed image
with a piecewise planar image. Therefore, the denoised im-
age appears less blocky and more natural than that processed
by the PM second-order PDE.
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Fig. 1 Conductance coefficient ¢, and flux function J, for

different Laplacian threshold values. (a) Conductance coefficient
¢;; (b) Flux function J,

However, the YK fourth-order PDE tends to leave the
processed images with isolated black and white speckles
which may be characterized as pixels whose intensity values
are either much larger or smaller than those of their neigh-
boring pixels. For instance, if the pixel located on the verge
in the neighborhood is almost black, and if it is next to a
white edge in the image, then the center pixel appears dar-

ker than its neighboring pixels because the intensity value of
the center pixel is weakened by the verge pixel in the neigh-
borhood. Then the value of the Laplacian at the pixel will
be very large, and as a result, the value of flux at the pixel
will be close to zero at the pixel. Consequently, the value
of the pixel will remain when using Eq. (2).

In order to remove the isolated speckles, You and Kaveh
proposed using median filtering to process the images by the
YK model. A recently developed method known as the hy-
brid model of the fourth-order PDE!' tries to deal with this
problem by attaching a relaxed median filter (RMF)'” at
the end of the YK fourth-order ( denoted as “the YK model
+RMF”). These two methods can degrade the image to
some degree. The main reason is that the ordering process
destroys some structures and spatial neighborhood informa-
tion. Lu et al. " proposed a new fourth-order PDE based
on the changes of the Laplacian ( denoted as “LC fourth-
order PDE”), which has the following formula,

%: “Ve(e,( |V Au )Y A (4)

where A =V’ is the Laplacian operator. In fact, as much as
the order of the derivative of the image is higher, the sensi-
tivity to the noise is higher. Therefore, the image processed
by the LC fourth-order PDE cannot effectively remove noise
when the image noise level is higher. As mentioned earlier,
the YK fourth-order PDE leaves the processed images with
isolated black and white speckles, while the improved ver-
sions of the YK fourth-order PDE can degrade the image to
some degree when removing the isolated speckles. In the
following section, we will address this problem.

2 Proposed Fourth-Order PDE

The ability of edge preservation in the fourth-order PDE-
based denoising method strongly depends on the conduct-
ance coefficient. The desirable conductance coefficient
should be diffused more in smooth areas and less around in-
tensity transitions, so that small variations in image intensity
such as noise and unwanted texture are smoothed and edges
are preserved.

Let e R’ be a rectangular image domain and (2, = 2 x
[0, T]. We propose a new formula for the conductance co-
efficient in the form of

Cz(x’ y) t) =
1
1+( | Vu(x, y, 1) | /k)*
1
L+( | Vulx, y, 1) | /k)°

(x,y,1) e}, =0 x[0,T]

(x,y,0) e, -0,
(5)

where 7 >0 is the stopping time; (2; is the isolated speckle
domain which will be determined later.

As mentioned in the previous section, isolated speckles
have significantly smaller or larger intensity values than their
neighboring pixels. Correspondly, isolated speckles have
significantly smaller or larger Laplacian values than their
neighboring pixels in the Laplacian domain. In order to ex-
ploit this property, we present the following algorithm to
determine domain (2. Let U denote the Laplacian map of
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image u, and the mean and variance of the neighboring
points around point (x, y) in the Laplacian domain U are

m:Ux+1,y+Ux—l,y+Ux,y—l +Ux,y+1 (6)
4
and
U, +U._, ,+U, _ +U.,
0_2: x+1,y x—],;4 x,y-1 x, y+1 _m2 (7)

For domain segmentation using m and ¢°, we propose the
following scheme:
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otherwise
where a is a constant that may be adjusted for a specific ap-
plication.

The first term in Eq. (5) implies the diffusion of the iso-

lated speckles. In this domain, our proposed fourth-order
PDE has the following form:
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In the domain (2, — (2';, our proposed fourth-order PDE has
the following form:
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(10)
which is similar to Eq. (2).

The implementation of the fourth-order PDE process is it-
erative. Thus, implementation of an iterative algorithm
greatly depends on the termination time 7, which causes
what we often refer to as the termination problem. It can be
stopped manually by setting 7 to be a fixed number. How-
ever, in real applications, different images require different
termination times. Several criteria for estimating the optimal
stopping time are preferred'”"”'. In this paper, the frequen-
cy approach proposed in Ref.[17] is used to determine the
optimum iteration stopping time when compared with other
methods.

Given an image, u(x, y,0) denotes the original intensity
of pixel (x, y), and we use the explicit Euler scheme with a
forward difference method for the time derivative, the cen-
tral difference scheme with a 3 x3 kernel for the spatial de-
rivatives, and the 8-nearest neighborhood discretization of
the Laplacian operator for computing the Laplacian of the
image. We summarize the proposed fourth-order PDE meth-
od as follows:

Step 1 Initialization.

Input a given image u. u(x, y,0) denotes the original in-
tensity of pixel (x, y).

Set parameters a, k, and T.

Step 2 Iterate until # =T.

Determine the isolated speckles domain (2;.

For each pixel (x, y), if (x, y) e 2}, then Eq. (9) is
chosen for denoising; otherwise, choose Eq. (10).

A block diagram of the proposed fourth-order PDE algo-
rithm is shown in Fig. 2.

Input image
Initialization

Speckle
domain?

Denoising by Eq. (9) |

Denoising by Eq. (10)

N

N>
| Output image I

Fig. 2 Block diagram of proposed fourth-order PDE method

3 Experiments

In this section, we present numerical results obtained by
applying the proposed fourth-order PDE to image denos-
ing. We test the proposed method on the “Lena” image
with a size of 256 x 256 and the “license plate” image with
a size of 240 x 306.

Fig. 3 shows a comparative analysis of the proposed meth-
od with the YK fourth-order PDE method. Figs.3(a) and
(b) show the original “Lena” image and the corresponding
noisy image. The results for the YK fourth-order PDE and
the proposed fourth-order PDE are displayed in Figs. 3(c)
and (d). In order to appraise the nonlinear behavior of the
two methods, four plots of a horizontal line from the image
are depicted in Fig. 4. Figs. 4(a) and (b) show the row
number 100 of the original image and the noisy image, re-
spectively. The corresponding rows of processed images
using the YK fourth-order PDE and the proposed fourth-order
PDE method are presented in Figs. 4(c) and (d). From
Figs. 3 and 4, it can be seen that the YK fourth-order PDE
leaves the processed image with isolated speckles, while the

(a) (b)

(d)

Fig.3 Comparison of proposed method and YK fourth-order
PDE for “Lena” image. (a) Original image; (b) Noised image;
(¢) YK fourth-order PDE with £ =0.5; (d) The proposed fourth-or-
der PDE with k=0.5 and a =4
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Fig.4 Plot of gray level values obtained along one line of
Fig. 3. (a) Original image; (b) Noised image; (c) YK fourth-order
PDE; (d) The proposed fourth-order PDE

proposed fourth-order PDE exhibits a better result. To quantify

the achieved performance improvements, we adopt improve-
ment in signal-to-noise ratio (ISNR), which is defined as

> Luli, ) = uy(i, )]’
ISNR = 10logl0 | =
e (Z[u(i,j) — Uy (5 DT

(1)

where u,(+) is the initial image (noised image) and u,,(*)
is the denoised image. The greater the value of ISNR, the

better the restored image. The ISNR values of the YK
fourth-order PDE and the proposed fourth-order PDE are
6.388 1 and 7.203 5 dB, respectively. The performance of
the proposed fourth-order PDE is obviously better.

To verify the effectiveness of the proposed fourth-order
PDE method for image denoising, it is evaluated by com-
parison with the PM second-order PDE'", the YK fourth-
order PDE"™ | the YK fourth-order PDE + RMF'"' | and the
LC fourth-order PDE'"". Fig. 5 (a) shows the original
“license plate” image and we generate a noisy image, as
shown in Fig. 5(b). The results yielded by the PM second-
order PDE with k =5 and the YK fourth-order PDE with k =
0.5 are shown in Figs.5(c) and (d), respectively. We ob-
serve that the PM second-order PDE can cause the processed
image to be blocky, but the YK fourth-order PDE can avoid
this blocky effect. However, both the PM second-order
PDE and the YK fourth-order PDE tend to leave the pro-
cessed image with isolated speckles. Fig. 5(e) is the de-
noised image by using “YK fourth-order PDE + RMF”. It
can remove the isolated speckles but it can degrade the im-
age to some degree. Fig. 5(f) is the denoised image by
using the LC fourth-order PDE with k£ =0.5. Fig.5(g) is the
denoised image using the proposed fourth-order PDE with a
=4, while other parameters are the same as those obtained
in Figs.5 (d) and (c). The PSNR corresponding to these

Fig.5 Comparison of different methods for image denoising.
(a) Original image; (b) Noised image; (c) PM second-order
PDE!"; (d) YK fourth-order PDE'®!; (e) YK fourth-order PDE +
RMF!"2; (f) LC fourth-order PDE!'¥; (g) The proposed fourth-or-
der PDE
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results are listed in Tab. 1. From Fig.5 and Tab. 1, we can
see that the proposed method shows the best performance.

Tab.1 ISNR values for “license plate” image
Image ISNR/dB
PM second-order PDE 5.926 6
YK fourth-order PDE 6.0723
YK fourth-order PDE + RMF 5.9517
LC fourth-order PDE 6.304 6
Proposed fourth-order PDE 6.993 6

4 Conclusion

A denoising method based on the fourth-order PDE is
proposed. The proposed method segments the image domain
into two domains, a speckle domain and a non-speckle do-
main, based on the statistical properties of isolated speckles
in the Laplacian domain. According to the domain type, a
different conductance coefficient is used in the fourth-order
PDE. The proposed method inherits the advantages of the
fourth-order PDE, which can avoid the blocky effects wide-
ly seen in images processed by the second-order PDE. Com-
pared with the existing fourth-order PDEs, the proposed
fourth-order PDE can remove isolated speckles and keep the
edges from being blurred. Experimental results verify the ef-
fectiveness of the proposed method.
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