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Abstract: A constructive-pruning hybrid method ( CPHM) for
radial basis function (RBF) networks is proposed to improve the
prediction accuracy of ash fusion temperatures ( AFT). The
CPHM incorporates the advantages of the construction algorithm
and the pruning algorithm of neural networks, and the training
process of the CPHM is divided into two stages: rough tuning
and fine tuning. In rough tuning, new hidden units are added to
the current network until some performance index is satisfied. In
fine tuning, the network structure and the model parameters are
further adjusted. And, based on components of coal ash, a
model using the CPHM is established to predict the AFT. The
results show that the CPHM prediction model is characterized by
its high precision, compact network structure, as well as strong
generalization ability and robustness.
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mero et al. ™ reported the fusibility of the ash as a function
of the content of the eight principal oxides frequently found
in coal ash, i.e., SiO,, ALO,, Fe,O,, CaO, MgO,
TiO,, K,O and Na,O. And until now, many relational ex-
pressions about the AFT have been developed with a number
of parameters which involve one or more chemical constitu-
ents of the coal ash. The regression formula is one of the
widely used methods while there are less mature schemes.
However, in many cases, more optimal results are obtained
by neural networks"' .

Amoudi et al. """ reported comparisons of back propaga-
tion (BP) and RBF neural networks and proved that RBF
networks perform better than MLP networks using the BP al-
gorithm in model building, prediction accuracy and network
simplicity.

However, practical model performance of RBF networks
heavily depends on the network structure. In general, mini-
mal networks that satisfy training accuracy are preferred to
ensure the generalization performance. In this paper, we
propose a CPHM for designing RBF nets and apply it to es-
tablish a prediction model of the AFT. The CPHM com-

he AFT of coal directly relates to the thermal efficien-
cy of steam boilers in coal-fired power stations'" . Ro-
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bines the advantages of ROLS™, RAN", and regulariza-
tion'"”, so the number and position of unit centers of the
RBF net are both adapted in learning. The learning process
of the CPHM can be divided into two stages: rough tuning
and fine tuning. In rough tuning, hidden units are added to
the current network using RAN until some performance in-
dex is met. In fine tuning, the fat of the network is pruned
using regularization. In experiments, we show that RBF
networks obtained with the CPHM not only generalize well,
but also maintain satisfactory performance even when the
training set is changed. And the prediction model of the
AFT works well.

1 Structure Definition

Considering an RBF net with N inputs, M hidden units,
one output, and Gaussian radial basis functions ( see Fig 1),
the overall input-output transfer function of the network can
be defined as

flx) = Zwigpt,’(x) +b (1)

where x e R" and f(x) € R are the input and output of the
network, w, denotes the weight from the i-th hidden unit to

I x-ell/r

the output node, and b is the bias term. ¢, (x) =e”
is the response of hidden units, where ¢, € R" is unit cen-
ters, r,is the spread of the i-th radial basis function.

Fig.1 Structure of RBF net

The N observations of the net are T = {(X,, y,) \ i=1,
2,...,N}. Weuse X=[X,, X,, ..., X,] to denote observa-
tion input matrix, and the teacher signal is Y =[y,, y,, ...,
yy]". Thus, the output of the RBF net is

fiX) =P,W+B =3% wp, +B (2)

where W=[w,, w,, ..., wM]T is the output weight vector, P,,

=[p.pss Pyl P =P (X)), D (X,), .0, D (X1
and B is the bias vecor. Generally, there is a deviation e be-
tween f(X) and Y,



160

Ding Weiming, Wu Xiaoli, and Wei Haikun

Y=f(X) +e=P,W+B+e=P,W+e (3)

where P, = [p,, P,» -, P> 141, 1, is an N-dimensional
column vector with all its elements equal to 1, and W =

T
[w,, Wy, ..., wy,, b] .

2 Constructive-Pruning Hybrid Method

The training process of the CPHM is divided into two sta-
ges: rough tuning and fine tuning. In rough tuning, we add
new hidden units to the current network. In fine tuning, we
further use regularization to adjust the network structure and
model parameters including unit number, unit centers, and
output weights.

2.1 Rough tuning

The crux of rough tuning is how to select a new hidden
unit and when to terminate this process.

If the current RBF net with M hidden units cannot approx-
imate the target function well, we add new hidden units to
the RBF net. Consider adding one unit each time. Since we
have no prior knowledge about the target function, we select
the center of the new hidden unit among sample inputs, and
then adjust it to an appropriate position.

From Eq. (3), if we consider Y as a vector with dimen-
sion N, then Y is a linear combination of p,’s and 1,. Then
{p,.p,,---.P,,1,} forms a basis in an N-dimensional vector
space.

The cost function with Gaussian regularization is

E=(Y-P,W)"(Y-P,W) + \W'W (4)

where A is the regular. Let 9E/ oW =0, we obtain the mini-
mum value of Eq. (4),

E,=Y'[I,-P,(P,P,+)I,) 'P,]Y (5)

Suppose that the newly selected unit center is X,. Let s, =
[D.(X),D.(X,),--, @C‘(XN)]T, S=I[s,, 8,..., sy], and
P,. =[P, s,. Thus, we should select s; that satisfies

E, . (s;) =min{E, (s),i=1,2,...,N} (6)

The first unit center is selected as the sample input X,
such that the relative s; has the maximum projection on Y.
That is

E(X) =max{Y's,j=1,2, .., N} (7)

As we know, the condition number of a matrix indicates
its illness, so we can use the condition number of P}, P, .,
to decide when to stop rough tuning. Concretely, when the

following equation is satisfied, we stop rough tuning.
C(Py,,P,,) >C,, (8)

where C(A) = || A || | A" || is the condition number of ma-
trix A, || A || is the Frobenius distance. C,__ should be se-
lected a priori. Empirically, it should not be greater than
10°, because most simulation software such as Matlab will

give warning if C, is greater than 10°.
2.2 Fine tuning

Fine tuning includes the tuning of unit centers and the

output weights, and the pruning of redundant units.

Considering that the RBF net has a “local” property, we
use those observations whose inputs are near the new unit
center to tune its position. If ¢, is the new unit center and r,
is its spread, then the teacher samples are

A={(X.,y) | |X,-c || <xr, j=1,2,..,N}

(9)

where « denotes the overlap coefficient. The greater « is,
the more teacher samples are selected.

We use the least mean square algorithm to adjust the unit
center, and then the modification to ¢, is

Ac,‘(X,‘) y,) =4 AZ‘L(X, _c,')(;bC,(X,')(y,‘ _f(Xj))W,‘ (10)

where 7 is the learning rate.

Each time we adjust the unit centers, and we should also
adjust the output weights and bias. In fact, when all the unit
centers are fixed, we can obtain the optimal output weights
by minimizing Eq. (4). So we obtain

W, BT =W, (11)

[w,w,, ..

In the CPHM, the cost function has a pruning property,
some redundant output weights may decay to zeros during
fine tuning. Thus, the corresponding hidden units can be
deleted. For convenience, if the output weight w, meets the
following condition the corresponding hidden unit can be
pruned.

abs(w,) <w_,, (12)

where w . is the threshold weight. Besides, we use the rules

proposed by Weigend"" to adjust A by introducing the fol-
lowing errors and checking their relationships during learn-

ing.
3 Test of CPHM on Function Approximation Problem

Considering the approximation of the following polynomi-
al function,

y(x) =sin(3(x +0. 8)%)

where x € R. The training set is generated as follows: The
size is N =100, with sample inputs x; uniformly generated
from [ 1, 1] and sample outputs y(x;) + e,. Here e, is a
Gaussian noise with mean 0, variance 0. 5.

Fig. 2(a) shows a typical training set, and Figs.2(b),
(c) and (d) show the results fitted by RAN, ROLS and
CPHM, respectively. In Fig. 2, RAN generates 6 hidden
units, with 6, =1.6, §,,=0.3, y=0.977, k=0.87, 5
=0.05, and the learning epoch is 400; ROLS generates 25
hidden units, with parameters y =0.2 and A =0. 006.

Comparatively, the CPHM generates 17 hidden units with
the following parameters: y =0.2, k=1, A =0.006, AX =
0.003, £ =0.95,p=0.95, n=10"*, C,, =10°and w,,, =
0. 1. The target error is set to zero, and the learning epoch
is 200.

Fig. 3 shows the history of training error, regular A and
the number of hidden units in the CPHM. In rough tuning,



Prediction of coal ash fusion temperature using constructive-pruning hybrid method for RBF networks

161

1
0
x
d

(d)

Fig. 2 Training set and fitting curves of RAN, ROLS, and

CPHM. (a) Target function and one example of the training sets; (b)
Fitted by RAN; (c) Fitted by ROLS; (d) Fitted by CPHM

training error decreases rapidly with the increase in hidden
units. When the number of hidden units reaches 24, the net-
work reaches its condition number threshold, and rough tun-
ing stops, and fine tuning begins. During fine tuning, the
training error fluctuates slightly, but the hidden unit number
decreases as A increases. At the 71th epoch, the hidden unit
number is 18. After that, this number remains unchanged
although A increases. This indicates that the fine tuning is
able to adjust weights and simplify the network without in-
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Fig.3 History of training error, A and number of hidden units.
(a) Training error; (b) A; (c) Hidden unit number

creasing the training error.
To further compare the performance of the three methods,
we give plots of data error vs. fitting error for 100 training

N
sets(see Fig. 4). Data error is defined as /lﬁz ef , and
1

100

Y (G(x,) —f(x))* ., which can be

fitting error is 100

denoted as a generalization error of the RBF net. In Fig. 4,
each data set corresponds to a point, and each data error is
near 0. 5, which is the variance of the noise.

Tab. 1 shows major performance of the RBF nets obtained
by three methods on 100 and 40 different data sets. All the
parameters are well chosen to obtain optimal performance.

From Fig. 4 and Tab. 1, we can find that although net-
works obtained by RAN have the compact structure, they do

Tab.1 Comparison of RBF nets obtained by three methods
100 data sets 40 data sets

Items
RAN ROLS CPHM ROLS CPHM
Averaged hidden units 8.35 21.6 16.1 27.5 18.6
Variance of hidden units 1.037 5.471 8.628 16.47 18.64
Averaged data error  0.496 0.499 0.501 0.496 0.489
Averaged fit error 0.265 0.172 0.157 0.327 0.231
Variance of fit error  0.008 0.001 0.001 0.016 0.003
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Fig. 4 Data-fitting error plot of three methods when using 100
training samples. (a) RAN; (b) ROLS; (c¢) CPHM

not generalize so well as networks obtained by the CPHM
and ROLS. In our simulation with RAN, we try to decrease
8., and y, but the results become worse with dramatically
increased hidden units and fitting error. Comparatively,
RBF nets designed with the CPHM have both compact struc-
ture and low testing error, indicating that fine tuning of the
CPHM not only has the simplified network structure, but al-
so increases its generalization ability. When we use 100
samples in each data set, the testing error of the RBF nets
obtained by ROLS is comparable to that of the CPHM, indi-
cating that rough tuning of the CPHM is efficient. The vari-
ance of the fitting error of the CPHM is smaller than that of
ROLS, indicating that fine tuning can increase generaliza-
tion ability of RBF nets and robustness on different data
sets.

In the above simulation, we use 100 samples in each data
set. In this case, the bias between the original unit centers
and their optimal values after fine tuning is small, so the
fine tuning does not improve generalization so much. In the
next experiment, we use 40 samples in each data set, and
the results are shown in Tab. 1. It is obvious that the testing
error of the CPHM is much lower than that of ROLS, which

indicates that the CPHM performs better than ROLS when
the size of the training set is small. The fitting error of the
CPHM remains at 0. 003, indicating that the CPHM main-
tains good robustness even when the data set is changed.

4 Prediction of Fusion Temperature of Coal Ash

A RBF net with eight inputs and one output is used to
predict the fusion temperature of mixed coal, the eight in-
puts are the ingredients of the oxides SiO,, Al,O,, Fe,O,,
CaO, MgO, TiO,, K,O and Na,O, and the output is the
fusion temperature. 155 samples are used for training, and
50 other samples are used for testing. All the samples are
obtained by using chemical analysis in the field, and all the
samples are normalized in the range of [0, 1].

The CPHM and RAN are used to design RBF nets. In the
CPHM, the epoch is 145, spread constant y =0.88, A =
0.006, C,, = 10°, Ax =0.000 2, u =0.95, the target er-
ror is set to zero, the learning rate n = 10 % and the thresh-
old weight for pruning is w,;, =0.1. In RAN, § . =2.6,
S =0. 8, learning rate n =0. 01, e, =60, and the epoch
is 165.

Tab. 2 shows the results of two methods. Fig.5 plots pre-
dicted fusion temperature vs. measured fusion temperature
on testing samples and training samples. In Fig.5, “+7 is
for testing samples, “ * 7 is for training samples, and the
diagonal line indicates that the measured fusion temperature

max

Tab.2 Comparison of RBF nets obtained by CPHM and
RAN methods

Method  Training error/10°  Testing error/10°  Hidden units
RAN 5.541 1.748 10
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Fig. 5 Test fusion temperature of RBF nets obtained by
CPHM and RAN. (a) RAN; (b) CPHM
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is equal to the predicted fusion temperature.

Compared with RAN, we can find from Tab. 2 and Fig. 5
that the RBF net obtained with the CPHM has not only small
training and testing errors, but also a more compact network
structure.

5 Conclusion

In this paper, an RBF model is developed for the predic-
tion of the ash fusion temperature from ash composition
using the constructive-pruning hybrid method. And the
trained model can always achieve much better results than
traditional RAN and ROLS nets. With the CPHM, we ad-
just both the network structure parameters and the model pa-
rameters in learning. Tests show that networks designed
with the CPHM have both compact structure and better gen-
eralization ability. And, the CPHM method maintains good
performance even when training set is changed. That is to
say, designed networks have a low variance of fitting error
with different training data sets.
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