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Abstract: Traffic wave theory is used to study the critical
conditions for traffic jams according to their features. First, the
characteristics of traffic wave propagation is analyzed for the
simple signal-controlled lane and the critical conditions for
oversaturation is established. Then, the basic road is
decomposed into a series of one-way links according to its
topological characteristics. Based on the decomposition, traffic
wave propagation under complex conditions is studied. Three
complicated factors are considered to establish the corresponding
critical conditions of jam formation, namely, dynamic and
insufficient split, channelized section spillover and endogenous
traffic flow. The results show that road geometric features,
traffic demand structures and signal settings influence the
formation and propagation of traffic congestion. These findings
can serve as a theoretical basis for future network jam control.
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he urban road network has been considered as the life-
line of urban daily operations. It serves as the basis of
the urban economy. So, assurance of its normal operation is
important. However, with the development of urbanization,
the number of vehicles exceeds the capacity of the road net-
work, which often results in large scale traffic jams during
peak hours and leads to many problems such as pollution,
noise and so on. A large scale traffic jam often forms from
a local jam which takes place in a road or a single node.
According to Ref. [1], there are three sources of a traffic
jam: temporary obstruction, stochastic fluctuation in de-
mand, and permanent capacity bottleneck. These types of
congestion cannot be efficiently prevented because they are
tightly related with road topology, land usage and other fac-
tors. However, if we can control the formation and propa-
gation of traffic jams, then, theoretically, network traffic
jams will be prevented. Literature focusing on this subject
currently can be classified into the following three types.
The first type of research is conducted with a lack of theo-
retical analysis tools; many researchers use simulation meth-
ods such as the cell transmission model™ and the cellular au-
tomata model®™' to study traffic jam dynamics'"’ and the phys-
ical features'*™. This kind of research does not require much
theoretical deduction and it can set simulation parameters eas-
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ily. However, the used road networks in previous studies are
usually regular. So we cannot obtain universal conclusions.

The second type of research is called “gridlock” proposed
by Daganzo'®. By dividing the network into neighborhood-
sized “reservoirs”, the analysis is simplified and the monitor
or control measures can be taken on the neighborhood level.
This method is too simple to take network control parame-
ters such as cycle, split and offset into account.

The third type of research mainly focuses on the individu-
al responses to a traffic jam'!” and usually adopts networks
which are more simple than those referred to above.

All these researches are based on road networks with sim-
ple topology. However, this simplification is too coarse.
For example, traffic conflicts in the intersection cannot be
analyzed by the traditional framework. Roads always consist
of several lanes including channelized sections, and traffic
flow may be left-turn, run-through or right-turn. These fea-
tures cannot be revealed with a simple state equation.

In this paper, we deal with this problem using traffic
wave theory together with the decomposition method for a
basic road. Hence, the critical conditions for various scenar-
ios can be established, including the simplest one-way road
and the complicated condition such as endogenous flow and
channelized section spillover and so on.

1 Simple Condition

Traffic congestion always stems from the local congestion
of a single road. Consider a one-lane road that is controlled
by a signal without endogenous flow as shown in Fig. 1,
which is the simplest condition in a road network. The rela-
tionship between flow and density is assumed to be a para-
bolic function as shown in Fig. 2. Where g, denotes the
maximum flow and k; denotes the congestion density. A
traffic queue forms under signal control. Assume that g is
the effective green time, C is the cycle, and A is the split,
A =g/C . The upstream flow is ¢ (point A in Fig.2), and k
can be obtained from a parabolic function. The density of
the upstream flow is always smaller than optimum density
under a maximum flow, that is, point A should be located
on the left side of the curve. Otherwise, the stopping wave
speed will be greater than the starting wave speed, which
denotes that the queue will never disperse (see Fig.2).
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Fig.1 Single one-way link
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Fig.2 Fundamental diagram

Formation and dispersion of a queue behind the stop line
at a signal controlled road is shown in Fig.3(a). At the be-
ginning of the red time, the stopping wave (line OB in Fig.
3(a) which represents the queue back) propagates upstream
with velocity u, and a queue forms. When the effective
green time begins, a starting wave (line AB in Fig. 3(a))
emerges and also propagates upstream with a greater speed
u,. After t', the starting wave catches up with the stopping
wave, the queue has dispersed and a new wave u, forms. It
takes " for wave u, to run through the stop line. If the ef-
fective green time g is greater than ¢’ +¢”, then the traffic of
each cycle will be the same. However, if g is smaller than
t' +1", the wave propagation profile of each cycle is differ-
ent (see Fig.3(b)). Suppose that there is no vehicle at the
beginning. During the second cycle, the stopping wave first
propagates with speed u,, which makes the queue back of
this cycle further away from the stop line than the former
cycle. So the queue length will be longer and longer. It is
an unstable condition which represents oversaturation.
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Fig.3 Traffic wave propagation. (a) Unsaturated
condition; (b) Saturated condition

Based on the above analysis, some formulae can be ob-
tained as follows:
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When the effective green time g =t' + ¢”, a stable state
forms. Given a flow rate ¢, A can be determined. If A de-
creases, oversaturation will occur. Critical condition is de-
fined such that the maximal queue length equals the road
length. Larger g or smaller split both will result in queue
spillover. It can be easily expressed by g =t' +¢" and [ =
L, ie.,
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2 Spillover Condition for Basic Road

The problems discussed above are mainly focused on the
ideal scenario of one-way links while the case in reality
shows more topological complexity. We define the road that
always appears in an urban road network as a basic road( see
Fig.4). It is controlled by a signal with a channelized sec-
tion of length /,. Overall upstream traffic demand, ¢, is as-
sumed to be uniformly distributed between two lanes, i.e.,
q, = q,- The proportion of left-turn flow, right-turn flow
and through-flow is p_,, p., and p (and p, =1 -p, -p..),
respectively. So we can obtain
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Fig.4 Sketch map of basic road and its decomposition.
(a) Basic road topology; (b) Decomposition

Decompose the basic road as shown in Fig. 4(b). The
basic road is divided into two sections: the upstream section
and the channelized section. Both include some single one-
way links. The channelized sections are controlled by the
signal (except the right-turn lane). So we only need to ana-
lyze spillover of the channelized section using the method in
section 1.

3 Complex Circumstances

During daily operation, circumstances often are more
complex than those described above. In this section, we
will deal with this problem by analyzing the following three
factors: dynamic and insufficient split, endogenous flow of
the basic road, and the spillover of the channelized section.

3.1 Dynamic and insufficient split

Under oversaturated conditions, queue length becomes
longer and longer. Each green signal shortens queue length
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while each red signal prolongs queue length. Furthermore,
the length shortened or prolonged is proportional to the time
duration of traffic signal because the wave speed including
the starting-wave and the stopping-wave is fixed.

Given the effective green time g, and the red time r, of cy-
cle i, based on the geometric relationship, the queue length
shortened h, and the queue length prolonged 4, in Fig. 5 can
be computed by
Iyl ity U,
U +u,

(8)
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Fig.5 Stopping wave and starting wave under oversaturation

So, the locations of queue back after red time r, and after
effective green time g, respectively are

L=l + Y (h —h) +h =1_+h (9
i-1

l, =1, + Y (h, ~h,) (10)
where [, denotes the length of the initial oversaturated
queue. It can also be calculated easily by assuming that traf-
fic is under saturation at first. From the geometric relation-
ship in Fig. 6, we can obtain ¢' = u,r/(u, — u,) and [, =
uu,r,/(u, —u,). Derivations are as follows:
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Substituting /, in Eq. (13) into Egs. (9) and (10), queue
back at any cycle can be calculated. When queue back ex-
ceeds road length, i.e., l,’ > L, a spillover emerges.

Fig. 6 Initial oversaturated queue

3.2 Influence of endogenous flow

It is generally assumed that traffic flow is generated at

nodes, i.e., intersections within the network or originations
of a road network™ . However, intersections inside the road
network actually do not generate flow. Of course, from the
viewpoint of a downstream intersection, flow is “produced”
at upstream intersection. In fact, most traffic jam forms
from the entrance of a road. So it is necessary to take en-
dogenous traffic flow into account. Due to the complexity in
analyzing a multi-lane road, we only deal with a one-way
road with an entrance inside (see Fig. 7). In Fig.7, ¢, is
the entrance flow rate. We assume that vehicles on major
roads have a priority to cross the intersection.
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Fig.7 Single road with endogenous traffic flow

When the queue back does not reach the entrance loca-
tion, the overall arriving flow is g, + g.; when the queue
length exceeds the distance between the stop line and the en-
trance location of endogenous flow [;, upstream flow be-
comes g;. So the stopping wave and starting wave with en-
dogenous flow propagate differently from that without en-
dogenous flow (see Fig.3(a)). Given ¢, and ¢g,, the stop-
ping wave profile and the starting wave profile can be de-
rived. u,, is the stopping wave when the queue length does
not exceed [, and u, is the stopping wave when queue length
exceeds [;,. The definition of u, and u,, are similar to u,
and u,, as shown in Fig. 8.
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Fig.8 Stopping wave and starting wave with endogenous flow

By the traffic wave theory, we can obtain
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The starting wave speed is the same as that in the one-
way signal controlled road. The critical spillover condition
is defined as follows: 1) Stopping wave and starting wave
meet exactly at the road tail; 2) Maximum queue length
equals road length L; 3) After waves disperse, effective
green time ends. The conditions above can be expressed
mathematically as

u

I
=r+t, ut'=L, —+—+t'=g (16)

Uy  Ug Uy Uy

3.3 Channelized section spillover

Up to now, most research does not take the spillover of a
channelized section into account. But at peak hours, due to
length constraints, the channelized section often cannot ac-
commodate excessive vehicles, which makes spillover of a
channelized section inevitable. According to Ref. [1], we
assume that the traffic flow of the upstream section is uni-
formly distributed (i.e., velocity, density and flow are uni-
formly distributed) and lane changing behavior is instantly
executed at the interface between the channelized section and
the upstream section. This is acceptable from the viewpoint
of the system description. From the fundamental traffic the-
ory, we can easily obtain the flow-density relationship ( see
Fig. 9). The parabolic curve below is that of a left-turn
channelized section. Fundamental diagrams of the right-turn
and the through channelized section are the same. The upper
curve is that of the upstream section.
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Fig.9 g-k relationship of two sections

When the channelized section spillover exists, the effect
can be considered as “virtual red time” (see Fig. 10). Once
there is a spillover, a queue will propagate upstream and
block the upstream section. The result is similar to the situa-
tion with the red signal. So a virtual signal is set at the in-
terface between two sections as shown in Fig. 10. Now the
analysis of the spillover can be carried out by the following
two steps:

1) The traffic wave of the channelized section is analyzed
to obtain virtual red time. Note that the queue of the
through section and the left-turn section may be overflowed
at the same time or may be not, so the block time of these
spillovers may be separated, overlapped or partly over-
lapped.

2) After the virtual time (interface block time) is ob-
tained, we analyze the traffic wave of the upstream section.
If the upstream section queue back exceeds the road length,

Fig. 10 Virtual signal and virtual red time

then the upstream intersection will be blocked.

Due to the fact that both channelized sections may block
the interface, we first deal with only one section spillover
and then two.

3.3.1 One section spillover

Since results of spillover of the two channelized sections
are the same, we simply assume that only one left-turn sec-
tion spillover takes place. When p, =p ., i.e., left-turn
traffic flow g, is equal to through flow ¢,. It can be de-
duced from Fig. 9 that the starting wave and the stopping
wave keep their speed after spreading over the interface.
This condition is the same as that in section 1.

When p, >p . (i.e. g, >q,), the upstream section holds
more flow averagely than the left turn lane. So the wave
propagation profile should be the pattern B in Fig. 11. Its
stopping wave speed u,, is greater than u, and u,, is smaller
than u,. When the effective green time g extends over point
z, the queue will disperse completely. So the critical condi-
tions for a domino formation can be deduced:
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Fig.11 Wave trajectory under one spillover condition

When p, <p.(i.e., g, <q,), the upstream section
holds less flow than the left turn lane. So the wave propaga-
tion profile should be the pattern C in Fig. 11. When the ef-
fective green time g ends after time x, the queue disperses
completely. Critical conditions for the domino formation are
deduced as

l I
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After the analyses above, the problem of the domino for-
mation with a channelized section spillover degrades to a
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single-way link spillover but with variational traffic waves.
It can be solved using the above method.
3.3.2 Two section spillovers

Sometimes, during peak hours, the left-turn demand and
the through demand may both exceed their respective capaci-
ty, which results in spillover of both sections. In such ca-
ses, the problem may be complicated but can be explained
conveniently. The spillovers of two sections are just the
same as on the situation when we set two virtual signals in
the interface at the same time. When both virtual signals are
green, the overall virtual signals are green; otherwise, the
overall signals are red (see Fig. 12).

Virtual signal of
left-turn Spilluvt:x

Virtual signal of
through-turn spillover

Virtual signal of
all spillovers

Fig. 12 Virtual signal at interface when two spillovers exist

4 Conclusion

Due to the complexity of urban traffic jams, much re-
search has been done under simple assumptions. In this pa-
per, a critical condition for urban traffic jam formation is
studied. From the research, we can see that many factors
such as road geometry, flow features and signal settings
contribute to the traffic jam formation and propagation,
which should be taken into account in the control of jams
during peak hours.

However, limited by the relatively macroscopic method
adopted, we cannot deeply investigate the mutual influence
of different flows such as the left-turn flow, the right-turn
flow and the through flow, which may contribute to the for-

mation and propagation of traffic jams. This may be solved
by microscopic analysis methods. Furthermore, the forma-
tion of congestion is only the beginning of large scale urban
traffic jams. Propagation of an urban traffic jam itself is in-
fluenced by many factors, such as road network topology,
network traffic demand, control measures and so on. The
propagation is more difficult to analyze but more important
for traffic jam control.
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