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Abstract: In order to raise the detection precision of the
extended binary phase shift keying ( EBPSK) receiver, a
detector based on the improved particle swarm optimization
algorithm (IMPSO) and the BP neural network is designed.
First, the characteristics of EBPSK modulated signals and the
special filtering mechanism of the impacting filter are
demonstrated.  Secondly, an improved particle swarm
optimization algorithm based on the logistic chaos disturbance
operator and the Cauchy mutation operator is proposed, and the
EBPSK detector is designed by utilizing the IMPSO-BP neural
network. Finally, the simulation of the EBPSK detector based
on the MPSO-BP neural network is conducted and the result is
compared with that of the adaptive threshold-based decision, the
BP neural network, and the PSO-BP detector, respectively.
Simulation results show that the detection performance of the
EBPSK detector based on the IMPSO-BP neural network is
better than those of the other three detectors.
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ith the rapid development of information, the trans-

mission rate of data becomes fast and the bandwidth
of the communication system becomes wide. However, the
spectrum efficiency has not been improved. How to use the
limited spectrum resource more efficiently has great signifi-
cance in the development of economy and society. The ex-
tend binary phase shift keying (EBPSK) modulation, which
takes the advantages of the small-angle phase modulation
and the variable hopping time to tighten the spectrum of the
emission signal, is proposed "'?'. The EBPSK not only cov-
ers the traditional BPSK modulation, but also includes the
missing cycle modulation (MCM)", the pulse position
phase reversal keying (3PRK)'' and the pulse position
phase shift keying (3PSK) "' modulation methods in US pa-
tent. Ref. [5] studied the special filtering mechanism of the
impacting filter and proposed the EBPSK detector model
based on the BP neural network. However, due to the de-
fect of the BP neural network in falling into local optimum
easily, the performance of the EBPSK detector based on the
BP neural network is limited. Refs. [6 — 7] proposed the
particle swarm optimization algorithm (PSO) to train the BP
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neural network and demonstrated that the performance of the
PSO-BP was better than that of the BP neural network in
terms of stability, recognition rate, and training time.

In this paper, the EBPSK modulation and the impacting
filter are introduced. Then, an improved particle swarm op-
timization algorithm (IMPSO) based on the logistic chaotic
disturbance operator ' and the Cauchy mutation operator '
is proposed. Subsequently, the EBPSK detector based on
the IMPSO-BP neural network is designed. Finally, the de-
tection performance of the IMPSO-BP detector is compared
with that of the adaptive threshold-based decision, the BP
neural network and the PSO-BP detector.

1 EBPSK Modulation and Impacting Filter
1.1 EBPSK modulation

EBPSK modulation is an asymmetric binary modulation
method. EBPSK modulation signals are defined as follows:

8o(1) =Asin2zf t Ost<T

Bsin(27f,t + 6)
Asin2zif. t

O<st<7,0<O<m7

&1 = { 7<t<T

where g,(7) and g,(#) are the modulation waveforms corre-
sponding to code 0 and code 1, respectively; T is the dura-
tion of the code; f, is the carrier frequency; and 7 is the du-
ration of phase hopping. The number of the carrier cycles in
T is N, and the number of the carrier cycles in 7 is K. That
is, T=N/f,,7=K/f,, and 7/T =K/N is called the modula-
tion duty ratio. If the hopping angle # approaches O, the
spectrum of the modulated waveform becomes narrow. If
the hopping angle § approaches 1, the spectrum of the mod-
ulated waveform becomes wide. Above all, the introduced
parameters are set as follows: f. =465 kHz, the sampling
frequency f, =10f,, A=B =1, N=20, K=2, §=mw. The
modulation waveform is shown in Fig. 1.
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Fig.1 EBPSK modulation waveform. (a) Code 0; (b) Code 1
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1.2 Impacting filter

The impacting filter is a special infinite impulse response
(IIR) filter, with the feature of “notch-frequency selection”
in an extremely narrow pass-band'""’. The mechanism of
the impacting filter is given in Ref. [ 10]. At present, the
impacting filter is designed by manual debugging. Here, we
select the impacting filter formed by one pair of adjacent
conjugate zeros and three pairs of adjacent conjugate poles,
and its expression can be written as

Hz) = ¥ b2 [ az” (1)

where

b, =1, b, = -1.618 092 409 933 249
b, =0.999 900 002 500 000 44
a,=1, a, = —4.562 007 492 096 165 1
a, =9.586 283 941 681 948 3, a, = —11.566 980 661 101 638
a, =8.452 352 883 974 324 3, a, = —3.546 714 769 300 573 2
as =0.685 515 443 313 960 3

As shown in Fig. 2, when EBPSK signals pass the impac-
ting filter, the phase hopping can be converted into the im-
pacting of the amplitude. This paper just utilizes the signifi-
cant waveform difference to design the best detector.
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Fig.2 EBPSK signal via the impacting filter

2 IMPSO-BP Detector
2.1 PSO algorithm

The PSO was proposed by Kennedy and Eberhart”' in

1995, which has the advantages of a few parameters, simple
structure and fast convergence velocity. After then, Shi and
Eberhart'"”"' proposed the linear decline strategy of inertia
weight to ensure that the PSO trends to a global search in
the early stage and trends to a local search in the later stage.
The updating formula of the inertia weight can be written as

B wmin)t
M

(@
o(l) =@y ——

(2)
where w,,, and w,;, denote the maximum and minimum of
the inertia weight, respectively; ¢ is the current iteration;
and M is the maximum of iteration steps.

The PSO is based on the position-velocity model. The
position of each particle is expressed as x; = {x;, X, ...,
X, }, and the velocity is expressed as v, = {v,, V,, .... Vip },

min

where D denotes the dimension of each particle. Each parti-
cle represents a feasible solution in the solution space, and
its quality is determined by the fitness value. In the process
of the search, each particle updates the position and velocity
by tracking the historical optimum P, = {P,, P,, ..., P}
and the global optimum P, = {P,, P,, ..., P,,} of the pop-
ulation until it meets the required precision or the maximum
of iteration steps. Specific iteration formulae are as follows:

Vig= vy o r(Py—x,) + e, 1 (P, = xy) (3)
Xig =Xy + Vi 4)

where d € [ 1, D]; w denotes the inertia weight; ¢, and c,
are the learning factors; and r,, r, are the random numbers
between 0 and 1, respectively; v, e[V, V

max] :

2.2 IMPSO-BP neural network

Due to the limited global searching ability of the PSO,
some improvements are introduced to enhance the global
searching ability. The specific improvement strategies are as
follows:

1) When the fitness value of a particle is less than the av-
erage fitness values of the population, the chaotic disturb-
ance operator is imposed on the particles to increase local
searching ability. Here, the logistic equation is used to gen-
erate a chaotic sequence. The specific expression is

X, =px, (1 -x,) n=1,2,3, ... (5)

2) The Cauchy mutation operator is implemented on the
particles whose fitness values are greater than the average
fitness value of the population. The specific expression is

X, =X, +no (6)

where 7 is the amplitude parameter of disturbance, and ¢ is
a random variable which meets the Cauchy distribution. Al-
though improvement strategies are conducted on the updated
particles, the steps of the PSO algorithm remain unchanged.
The training process of the IMPSO-BP neural network is
shown in Fig. 3.

2.3 IMPSO-BP detector

When the modulation waveforms pass the impacting fil-
ter, there is a significant difference between code 0 and code
1. Code 1 has impacting feature, but code 0 does not, as
shown in Fig.2. The EBPSK detector based on the IMPSO-
BP neural network is shown in Fig. 4.

3 Simulation
3.1 Simulation parameters

In the simulation, parameter settings include three parts:

1) EBPSK communication system The communication
channel is AWGN channel, the dimension of the input vec-
tor of the BP neural network is 40, the number of the train-
ing samples is 3 000, and the number of the testing samples
is 10°.

2) Neural network The number of neurons in the input
layer, the hidden layer and the output layer are 40, 3 and 1,
respectively.
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Fig.3 Training process of IMPSO-BP neural network

3) IMPSO algorithm The population size is 100; the di-
mension of the particle is 127; ¢, and ¢, are 1.496 2; and
the chaos control parameter y is 0. 4. Every dimension of
the particle position and velocity belongs to [ — 1, 1] and
[ -0.5,0.5], respectively; w,,, =0.95, w,, =0.4. The
maximum iteration number is 50.

min

3.2 Simulation results

On the condition of parameter settings given in section
3.1, simulation of the IMPSO-BP detector is implemented.
In order to compare the detection performance, simulations
of the adaptive threshold-based decision, the BP neural net-
work and the PSO-BP detector are also implemented. As
shown in Fig.5, we can clearly see that: 1) When the SNR
is higher than -2.3 dB, the PSO-BP detector has a better
performance than the BP neural network; 2) When the SNR
is lower than — 0. 8 dB, the PSO-BP detector has worse
performance than the adaptive threshold decision; 3) The
IMPSO-BP detector has the best detection performance of
all, and it can derive the SNR enhancement of 0.5 dB com-
pared with the adaptive threshold decision ( BER is 10 ™).
The results demonstrate that the global searching ability of
the PSO is limited, while the proposed IMPSO has a better
global searching ability.

3.3 Performance analysis

The three major factors affecting the IMPSO-BP detector

Input the
training sample|

AWGN Train IMPSO-
DAC channel ADC BP detector
v
EBPSK Impacting Derive IMPSO-BP Output
modulation filter envelope detector BER
Delay *

Fig.4 IMPSO-BP detector in EBPSK communication system
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Fig.5 BER comparison of different detectors

are the dimension of the input vector, the number of train-
ing samples, and the selected SNR during the training peri-
od. When the dimension of the input vector is 40 and the
SNR during the training period is —1 dB, the curves of the
BER vs. different training samples are shown in Fig. 6(a).
It can be seen that the more the training samples, the lower
the BER. When the number of the training samples is 3 000
and the SNR during the training period is - 1 dB, the

curves of the BER vs. different dimensions of the input vec-
tor are shown in Fig. 6(b). It can be seen that compared
with the dimensions of the input vector of 40 and 60, the
BER is better when the dimension is 50. When the dimen-
sion of the input vector is 40 and the number of the training
samples is 3 000, we obtain the curves of the BER vs. dif-
ferent SNRs during the training period as shown in Fig. 6
(c). It can be seen that when the SNR during the training
period is the median of the SNR range, the generation abili-
ty is the strongest, and the BER performance is the best.

4 Conclusion

This paper proposes an IMPSO algorithm based on the lo-
gistic chaos disturbance operator and the Cauchy mutation
operator, and designs the EBPSK detector based on the IM-
PSO-BP neural network. The BER performance of the IMP-
SO-BP detector is compared with three other detectors by
simulation. Simulation results show that: 1) The detection
performance of the IMPSO-BP is better than that of the
adaptive threshold-based decision, the BP neural network,
and the PSO-BP, which verifies that the IMPSO has better
global searching ability than the PSO; 2) The main factors
affecting the IMPSO-BP detector are the dimension of the
input vector, the number of training samples, and the selected



A new detector in EBPSK communication system

247

-1
10 Training sample number:
—e—1 000
—=—2 000
102§ ——3 000
g107°r
=)
10 -4 L
10—5 I ! I |
-3.0 -2.0 -1.0 0 1.0
SNR/dB
(a)
10 ~2& Dimension of input vector:
——40
—a— 50

BER

104

10—5 1 1 1 |
-3.0 -2.0 -1.0 0 1.0
SNR/dB
(e)
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training SNR. Meanwhile, how to select the input vector
reasonably is the future research direction.
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