Journal of Southeast University ( English Edition)

Vol. 27, No. 3, pp. 253 -256

Sept. 2011 ISSN 1003—7985

Effect of viscoelasticity on nonlinear vibration of single microbubble
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Abstract: Based on the Church-Hoff model, the nonlinear
oscillations of a single encapsulated microbubble with a finite
thickness shell are theoretically studied. The effects of
viscoelasticity on radial oscillations and the fundamental and
harmonic components are researched. The peaks of radial
oscillations and magnitudes of power spectra of the fundamental
and harmonic components all increase gradually with the shear
modulus of shell varying from 0 to 10 MPa by an interval of 0. 1
MPa at the same shear viscosity, while they decrease as the
shear viscosity increases from O to 1 Pa - s by an interval of
0.01 Pa - s at the same shear modulus. The fluctuation ranges
of subharmonic and ultraharmonic signals are much larger than
both the fundamental and second harmonic components. It
means that the effect of viscoelasticity on the subharmonic and
ultraharmonic signals is greater than that on the fundamental and
second harmonic components. So adjusting the viscoelasticity of
the shell is a potential method to obtain a perfect microbubble
contrast agent used for the subharmonic and ultraharmonic
imaging. Four points with significant fundamental and harmonic
components are chosen as an example: a shear viscosity of 0. 39
Pa - s with shear modulus of 3.9, 6.6, and 8.6 MPa,
respectively; a shear modulus of 6. 6 MPa with a shear viscosity
of 0.42 Pa - s.
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ommercially available ultrasound contrast agents

(UCA) are usually microbubbles of 1 to 10 um in di-
ameter, consisting of lipid, protein, or polymer shells'" and
are usually filled with inert-gas. Since the UCA can effec-
tively enhance the backscattering signal intensity, they have
received wide attention. When insonated by ultrasound
(US) of frequency f,, due to their nonlinear vibrational na-
ture, UCA microbubbles can not only return echo signals
with the same frequency but also send back signals with sub-
harmonics f0/2m, harmonics (2f,, 3f,, 4f,,...) and ultra-
harmonics (3f,/2, 5f,/2, 7f,/2)"*". Subharmonic signals
are expected to provide a higher contrast between biological
tissues and blood flow because the echo signals are generated
only from blood containing the contrast agents. Hence, sub-
harmonic or ultraharmonic imaging should have advantages as

an US imaging technique'”™. One disadvantage of subhar-
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monic imaging is that echo signals are usually weak. So the
enhancement of echo signals becomes an urgent task to make
subharmonic imaging effective in clinical applications.
Viscoelasticity of the shell plays an important role in the
nonlinear vibration of the coated microbubble'”. The vis-
coelasticity of different shell materials may be different. In
experiment, the viscoelasticity of ultrasound contrast agents
can be changed by selecting different shell materials or mod-
ifying the shell with various targeted antibodies or nanoparti-
cles!™"" . In this paper, we try to optimize the backscatter-
ing signals by adjusting the viscoelasticity through numerical
analysis. Our goal is to give some theoretical guidance for
producing microbubbles of UCA which can generate rich
subharmonic echo components for better imaging.

1 Theoretical Background

The theoretical description of the nonlinear oscillations
under US excitation for a UCA microbubble is based on the
Hoff model"” . The UCA microbubble considered here is an
air bubble enclosed in a solid, incompressible viscoelastic
shell (see Fig.1). The shell is described by shear modulus
G, and shear viscosity u,. The surrounding medium is
blood-like and modeled as a Newtonian fluid with shear vis-
cosity. The shear modulus G, and shear viscosity u, of a
polymeric material are in general frequency dependent. The
sound beam with a frequency of 2.25 MHz, one of the
commonly used frequencies in diagnostic medical imaging,
is used to insonate the microbubble. The equation is further
assumed that the existence of the shell reduces surface ten-
sions at the shell-liquid and shell-gas interfaces, so that sur-
face tension can be ignored and there is no tension in the
shell at equilibrium.
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Fig.1 Schematic diagram of an encapsulated air-filled microbubble

The Hoff equation can be written as

3k

L3 R, R
pl(RR+7R2):PO((E) —1)—Pa(l) —4/_1,1;_
d RR d.R R,
B, = 126G, =5 (1—;) (1)

where R is the instantaneous radius of the bubble; R, R are
the first and the second time derivatives of the instantaneous
radius, respectively; R, is the equilibrium radius; P, is the
ambient pressure; d_ is the shell thickness at rest; u, is the
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shear viscosity in the surrounding medium; G, is the shear
modulus of the shell and u, is shear viscosity of the shell.
P (1) is the time-varying incident acoustic pressure.

Using a prepared Matlab code implementing a fourth-
order Runge-Kutta procedure ( Matlab function ODEAS),
Eq. (1) is solved numerically for the following set of pa-
rameters: R, =5 pm; d, =0.05R,; u, =0.001 Pa - s; P,
=101.3 kPa; P, (t) = Asin(2xf.t); A =480 kPa and f, =
2.25 MHz. In all of the simulations, the initial conditions
are R(0) =R,, R(0) =0 and R(0) =0.

2 Results

2.1 Effects of viscoelasticity of shell on radial oscillations

We are now set to examine the parameter space for the
unknown parameters, instantaneous radius R(¢) and shear
viscosity u,, using the driving pressure of 480 kPa for an in-
itial bubble size of R, =5 pum and P,(t) = Asin[ (27 x2. 25
x10°0)1].

First of all, the changes of radius R(?) are studied with
different shear viscosities of shell. Varying shear viscosities
from 0.1 to 0.39 Pa - s and then to 1 Pa - s at the same
shear modulus of 6. 6 MPa, the effect of shear viscosity on
the oscillation radius can be worked out. Fig.2(a) shows
that the magnitudes of the negative resonance peak of stand-
ardized microbubble oscillation radius at the shear viscosity
of 0.1,
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Fig.2 Oscillation radius R(¢) changing with different viscoelas-
ticities. (a) With the shear viscosity of 0.1, 0.39 and 1 Pa - s at shear
modulus of 6. 6 MPa; (b) With the shear modulus of 1, 6. 6 and 10 MPa at
shear viscosity of 0.39 Pa - s

0.39 and 1 Pa - s are about 0. 80, 0.88 and 0. 95, respec-
tively.

Using a similar method, the effect of shear modulus on the
microbubble oscillation is investigated. Changing the shear
modulus from 1 to 6.6 MPa and then to 10 MPa at the same
shear viscosity of 0. 39 Pa - s, the effect of shear modulus on
the oscillation radius can be studied. Fig.2(b) shows that the
magnitudes of the negative peak of the standardized micro-
bubble oscillation radius at the shear modulus of 1, 6.6 and
10 MPa are about 0.91, 0. 88 and 0. 87, respectively.

From the above analysis, the effect of the shear viscosity
and the shear modulus on microbubble oscillations is easy to
understand. The shear viscosity, to a certain extent, pre-
vents the microbubble oscillations because the shear modulus
is the stiffness parameter, while the shear modulus as a rigid
parameter can enhance the microbubble oscillations. Hence,
the expected radial oscillations of the encapsulated micro-
bubble can be obtained by adjusting the viscoelasticity of the
microbubble moderately.

2.2 Effect of shell viscoelasticity on nonlinear oscillations

Eq. (1) is solved using the fourth-order Runge-Kutta al-
gorithm. The pressure P (t) scattered by an encapsulated
microbubble at a distance r from the center of the bubble
can be expressed as'"’

P.(1) =p, (2R + RR) (2)

2.2.1 Effect of shell shear viscosity

We are now set to examine the effects of shear viscosity
on microbubble nonlinear oscillations by changing the shear
viscosity from 0 to 1 Pa - s by an interval of 0.01 Pa - s at
the same shear modulus of 6. 6 MPa.

As can be seen in Fig.3(a), with the increase in viscosi-
ty, the fundamental, subharmonic, ultraharmonic and sec-
ond harmonic contents gradually decrease. The amplitudes
of the fundamental and the second harmonic components
fluctuate around - 12.27 and - 24.50 dB, respectively.
Moreover, the amplitudes of the subharmonic and ultrahar-
monic components fluctuate around -38.55 dB. The curve
of the subharmonic component has some large positive peaks
such as at 0.39 and 0.42 Pa - s, and their amplitudes are
—-31.20 and -34.59 dB, respectively. The curve of the
ultraharmonic component also has large positive peaks at
these two points, and their amplitudes are - 29.97 and
—32.29 dB, respectively.

2.2.2 Effect of shell shear modulus

Then the impact of the shear modulus on nonlinear oscil-
lations can be investigated by comparing the fundamental
and harmonics components at varied shear moduli under the
shear viscosity of 0. 39 Pa - s.

Fig. 3(b) shows four curves, which represent the funda-
mental, second harmonic, subharmonic and ultraharmonic
components, respectively. Changing the shear modulus
from 0 to 10 MPa by an interval of 0.1 MPa at the same
shear viscosity of 0. 39 Pa - s, the effects of shear viscosity
on the fundamental and harmonic components can be ob-
tained. This figure also presents that the curves increase
slowly with the increase in the shear modulus. The ampli-
tudes of the fundamental and the second harmonic compo-
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nents fluctuate around - 11.28 dB and - 24.85 dB, re-
spectively. In addition, the subharmonic and ultraharmonic
components vary around —37.96 dB. The curve of the sub-
harmonic component has some large positive peaks such as
at 3.9, 6.6 and 8.6 MPa, and their amplitudes are
-32.55, -31.20 and - 39.67 dB, respectively. The

curve of the ultraharmonic component also has three large
positive peaks at these three points, and their amplitudes are
—-29.97 and -33.92 dB, respectively.
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Fig.3 The fundamental and harmonic components varying with

shear modulus and shear viscosity. (a) At shear modulus of 6. 6 MPa;
(b) At shear viscosity of 0.39 Pa - s

2.2.3 Significant fundamental and harmonic compo-
nents

According to the above analysis, considering the conse-
quences of the fundamental and harmonic imaging, the
power spectrums of backscattered pressure from microbub-
bles at four points, the shear viscosity of 0. 39 and 0. 42 Pa

- s with a shear modulus of 6. 6 MPa, and the shear moduli
of 3.9 and 8.6 MPa with a shear viscosity of 0.39 are
worked out.

From Fig. 4, it can be seen that the fundamental, second
harmonic, subharmonic and ultraharmonic components are
all very significant. In Fig.4(a), the amplitudes of the fun-
damental, second, subharmonic and ultraharmonic compo-
nents are — 10.24, -24.51, -32.55 and - 36.45 dB,
respectively.

In Fig.4(b), the amplitudes of the fundamental, second,
subharmonic and ultraharmonic components are - 10. 05,
-21.36, -31.20 and -29.97 dB, respectively. In addi-
tion, 3f, 4f, 5f/2 and 7f/2 harmonic components are also
extraordinary. So the conclusion can be drawn: the shell

with a shear modulus of 6. 6 MPa and a shear viscosity of
0.39 Pa - s is fit for both fundamental and harmonic ima-
ging, especially for the subharmonic imaging.

In Fig.4(c), the amplitudes of the fundamental, second,
subharmonic and ultraharmonic components are - 9. 80,
-20.23, -29.87 and -33.92 dB, respectively.

In Fig.4(d), the amplitudes of the fundamental, second,
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Fig.4 Power spectrums of backscattered pressure from single mi-
crobubble. (a) G, =3.9 MPa, u, =0.39 Pa - s; (b) G, =6.6 MPa, p,
=0.39 Pa-s; (c) G, =8.6 MPa, u, =0.39 Pa - s; (d) G, =6.6 MPa,
e =0.42 Pa-s
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subharmonic and ultraharmonic components are - 14. 26,
—24.86, -34.59 and -32.58 dB, respectively.

3 Conclusion

This paper theoretically simulates the oscillation of a sin-
gle encapsulated microbubble and investigates the impacts of
shear modulus and shear viscosity on the oscillation proper-
ties. First, setting a fixed value of the shear viscosity or the
shear modulus and varying the other one to study the radii of
microbubble oscillations, we find that the oscillation radii
increase with the increase in the shear modulus while they
decrease with the increase in shear viscosity. Using a similar
method, a larger shear modulus causes larger amplitudes of
the fundamental and harmonic components. At the same
time, the smaller amplitudes of the fundamental and har-
monic components can be obtained with a larger shear vis-
cosity. Moreover, the shear modulus and shear viscosity af-
fect subharmonic and ultraharmonic components much grea-
ter than the fundamental and second harmonic components.
It is necessary to strictly control the value of shear viscosity
and shear modulus . Secondly, we plot four power spec-
trums of backscattering at different shear moduli and shear
viscosities: a shear viscosity of 0.39 Pa - s with a shear
modulus of 3.9 MPa, 0.39 Pa - s with 6.6 MPa, 0.39
Pa - s with 8.6 MPa, 0.42 Pa - s with 6.6 MPa. These
four power spectrums all show that the fundamental and har-
monic components are significant but have different ampli-
tudes and frequency bands. In summary, the studying of
viscoelasticity of the shell provides a guidance for a prepared
microbubble ultrasound contrast agent with suitable dynamic
characteristics and excellent imaging ability.
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