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Abstract: An analysis method based on the fuzzy Lyapunov
functions is presented to analyze the stability of the continuous
affine fuzzy systems. First, a method is introduced to deal with
the consequent part of the fuzzy local model. Thus, the stability
analysis method of the homogeneous fuzzy system can be used
for reference. Stability conditions are derived in terms of linear
matrix inequalities based on the fuzzy Lyapunov functions and
the modified common Lyapunov functions, respectively. The
results demonstrate that the stability result based on the fuzzy
Lyapunov functions is less conservative than that based on the
modified common Lyapunov functions via numerical examples.
Compared with the method which does not expand the
consequent part, the proposed method is simpler but its feasible
region is reduced. Finally, in order to expand the application of
the fuzzy Lyapunov functions, the piecewise fuzzy Lyapunov
function is proposed, which can be used to analyze the stability
for triangular or trapezoidal membership functions and obtain the
stability conditions. A numerical example validates the
effectiveness of the proposed approach.
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linear

he successful application of many advanced control al-
T gorithms relies on the accurate object model. Howev-
er, a simple model which can reflect the overall dynamic
characteristics of the nonlinear system is difficult to obtain
by the conventional linear modeling methods. The Takagi-
Sugeno (T-S) fuzzy model is an effective representation for
complex nonlinear systems, and fuzzy logical control has
been proved to be a successful control approach for certain
nonlinear systems'' ™.
The continuous T-S local linear dynamic models are de-
fined by rules in the following IF-THEN form:

R;: 1F z,(1) is M, and z,(1) is M, ..., z,(1) is M,
THEN X(1) = A, x(t) +a, ()

where R,(i =1, 2, ..., ) denotes the i-th fuzzy rule; z(7) =
{z,(1), 2,(t), ..., z,(1)} is the premise variable vector and
M,, M, ..., M, are fuzzy variables; x'(t) = {x (1),
x,(1), ..., x, (1)} is the state vector; A, is the matrix with
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appropriate dimensions in the local system; and a, is the af-
fine term.

In general, the T-S fuzzy system can be divided into two
categories: the homogeneous fuzzy system and the affine
fuzzy system™ . It is difficult to analyze the stability and
design the controller for the nonlinear system when the af-
fine term is considered. Therefore, most of the previous
works have just focused on the homogeneous fuzzy system.
The T-S fuzzy model can be built by data identification or
linearization of the original nonlinear system at some operat-
ing points, and the affine term exists in normal conditions.
If the affine term is ignored, the approximation capability of
the T-S fuzzy model will be weakened.

It is not until recently that some works have paid attention
to the stability of the affine fuzzy system. In Refs. [5 —6],
the stability and synthesis of the affine system are presented
for continuous and discrete cases, respectively. It is noted
that the approaches based on the common quadratic Lyapunov
functions lead to conservative conclusions. In Ref. [7], an
analytical method is presented for the discrete-time T-S fuzzy
dynamic systems based on the piecewise Lyapunov function.
The stability result is less conservative than that based on the
common Lyapunov functions. In this paper, the stability a-
nalysis of the affine fuzzy system is presented for the continu-
ous case based on fuzzy Lyapunov functions.

1 Processing Method of Consequent Part

If the affine fuzzy local model is described as Eq. (1),
the global model of the system can be expressed as

> W) {Ax(D) +a)

x(t) = 4= - —
> Wi(z()
X h(z(0) (Ax(n) +a) 2)
where W.(z(1)) = ﬁM;(zj(t));hi(z(t)) =M
Y W, (2(n)

i=1

h(z(t)) =0, ihi(z(t)) =1.

For the affine fuzzy local model, its equilibrium point is
not at the original point. Thus, it is more difficult to deal
with the stability analysis and the controller design'*. To
facilitate the stability analysis, the following assumption is
introduced.

Assumption 1 Let L, be the set of indices for the fuzzy
rules that contain the origin x =0, L, € {h,(0) #0} forie
L,, and the affine term a, =0. L, is the set of indices for the
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fuzzy rules that exclude the origin.
Remark 1 Assumption 1 assures that the origin x =0 is
the equilibrium point of the global affine fuzzy system.
Now, a processing method of the consequent part is intro-
duced . Define that

Zx.:[" "],xz[x 1"

Then, using these notations, the affine fuzzy local and
global model can be expressed respectively as

X(1) =Ax(1) ie LO} 3)
x¥(1) =Ax(1) iel,
and
1
¥(1) = Y hz(0)Ax(n  iel,
. 0 . (4)
20 = Y h(zAx el
i=1
Remark 2 In the above affine fuzzy local model, the

expression of x¥(f)is divided into two forms ie L, and i e L,
according to the differences in the fuzzy rules. In fact,

when i e L,, the expression of X () can take the place of
that when i € L,, and the corresponding relationships hold
that a, =0, ;1‘. =[4, 0; 0 O] andx =[x 01".

Remark 3 By Eq. (4), we can see that the expression of
the affine fuzzy model is similar to that of the homogeneous
fuzzy model. The stability analysis and the controller design
methods of the homogeneous fuzzy system can be applied to
the affine fuzzy system. In this paper, the stability analysis
of the affine fuzzy system is based on the fuzzy Lyapunov
functions. The basic idea is somewhat similar to that of Refs.
[9—10], but the main contents are completely new.

First, consider a function with the following form:

T
x Px

~T ~
X Px

Vix(n) = | e

iel,
where matrices P and P are positive definite. It is an exten-
sion of globally quadratic Lyapunov functions, and it is
proved to be a Lyapunov function candidate based on the
standard Lyapunov theory''"!.

Theorem 1 The continuous affine fuzzy system of Eq.
(2) is globally exponentially stable if there exist positive
definite matrices P and P such that the following linear ma-
trix inequalities (LMIs) are satisfied for i =1,2, ..., [,

ieLO} (5)
ielL

AP +PA, <0
A’P+PA, <0
Remark 4 The result can be readily obtained referring

to the stability analysis of homogeneous fuzzy systems'",
so the proving process is not listed due to lack of space.

2 Stability Analysis Based on Fuzzy Lyapunov
Functions

In order to compare the above stability conclusions, a sta-
bility analysis method for the affine fuzzy system based on
fuzzy Lyapunov functions is presented. The fuzzy Lyapunov

function candidate is defined as
1
h(z()x"Px iel,
1

Vix(n) =17 (6)

Y h (z())X'PE el
i=1

Notice that the function shares the same membership
functions with the affine fuzzy model of a dynamic system.

Theorem 2  Assuming that / SO, the continuous affine
fuzzy system of Eq. (2) is globally exponentially stable if
there exists a set of positive definite matrices P,, P,, ..., P,
which satisfy

1
S oP, +A-(ATP, +PA, +ATP, +PA) <0  pije L,
p=1

2
1
Y P, +%(211.TP‘. +P.A +ATP +PA) <0 pijel,
e

(7)

Wherep =1725 ceey l; 1 $l$]S].
Proof Considering the fuzzy Lyapunov function candi-
date (6), the time derivative of V(x) is given as

V()C) = Vl(x) + Vz(x)

icL, icl,

Wheniel,,
1 1
v =T = T -, =T =
V,(x) = 21 h x'Px + ;hi[x Px +%'Px] =
1 1 1
Z hX'Px + Zh [ ] hx"A/Px +x'P, zh]ﬁ.x] =
1 1 1
Zh,, x'Px + Z 1 hh X [A]P, +P,A 1% (3)

In the universe of the p-th membership function, if there
exists

h(z(1) <o,

then Eq. (8) can be rewritten as

. o1 « o
Vix) < D@, X'PX + -3 3 hh X' (AP, +

p=1 i=1 j=i
P,A, +AP, +P /A ]x =
1 1
. 1~
> ShhE [ Xep, + AP+
i=1 j=i p=1

Similar conclusion can be obtained when i e L,
1

Vilx) <

1

i=

1
I
> hh' | S 0P, + 5 (AP, +PA

i=i

AP +PA) |x

If the premises of Theorem 2 hold, V(x) is strictly nega-
tive for all state-space, and the continuous affine fuzzy sys-

tem is globally exponentially stable. Thus, the proof is
completed.
Remark 5 In the proving process of Theorem 2, V(x)

contains the time derivative of premise membership func-
tions, and ¢, can be obtained according to the membership
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functions'.

Remark 6 The stability analysis of the discrete fuzzy
system based on fuzzy Lyapunov functions does not include
the derivation of V(x), so the sufficient stability conditions
will not contain the time derivative of premise membership
functions.

Example 1 The stability of an affine fuzzy system is
checked by Theorems 1 and 2. Consider the fuzzy system
(2) with the following subsystems:

R: IF x,(1) is M, THEN (1) =Ax(t) +a, i =123

where
xT(t) =[x,(0),x,(D], a, =a, = [—g]

Il B S O

The membership functions are shown in Fig. 1.

M,(x,) = (1 +cos(x,))/2 lx, | <=

M,(x) = My(x,) ={i1 —cos(x))/2 0 < [x <

‘xl ‘ > T
M
M, 1l M, M,
L | | 1 1 1 1 |
-2 -3w/2 -@w —-7w/2 0o w2 w™ 3w/2 2w

%y
Fig.1 Membership functions

The stability conditions for the homogeneous fuzzy system
cannot be directly applied to this example. There exist no
positive definite matrices that satisfy Theorem 1 using the
LMI optimization technique. However, the simulation indi-
cates that the system is stable. Fig.2 shows the state response
of the affine system for an initial value of x =( -5,5)".

6

4

0 0.5 1 1.5 2 2.5 3
%1

Fig.2 System response from an initial condition
Using Theorem 2 and choosing ¢, =0, ¢, =¢, =0.5, a
set of positive definite matrices can be solved as follows:

p, =10° x|0.0102 0.0241 0.1157

0.0691 0.0102 0.07()8]
0.0708 0.1157 1.4398

5.5514
-0.8091

-0.809 1

. =10° x
P [ 1.2334

4.8417 -0.2793 0.3104
p, = 10" x| -0.2793 0.4683 2.0923
0.3104 2.0923 9.8675

It is verified that the affine fuzzy system is globally expo-
nentially stable. Fig.3 shows the behavior of the system for
two initial conditions of x =( =5,5)" and x = (5, =5)".

6
4 -
2+
«0F
B3
-2+

—4

-6 1 1 1 L L 1
-6 -4 -2 0 2 4 6

Fig.3 Trajectories from two initial conditions

In this example, the results reveal that Theorem 2 is less
conservative than Theorem 1. But it is noted that this con-
clusion is not always valid for any affine fuzzy system.

In addition, comparing Theorem 2 with the stability con-
clusions in Refs. [5 —6], it can be obtained that the suffi-
cient stability conditions will reduce the stability margin
through the processing method of the consequent part. One
possible reason is that the dimension of matrices A, is ex-
panded with zeros when the consequent part is processed. It
becomes more difficult to search positive definite matrices

P, by the LMI optimization technique. Another reason is
1

that the term /; ¢, P, may be the main conservative factor
when considering fuzzy Lyapunov functions. In Ref. [14],
a new fuzzy Lyapunov function is proposed for the homoge-
neous fuzzy system to eliminate the time derivative of the
membership functions, and it is believed that the result is
less conservative.

Remark 7 Notice that the membership functions should
be continuous and derivable in the universe for the continu-
ous fuzzy system when the stability analysis is based on
fuzzy Lyapunov functions. The method in Theorem 2 is not
suitable for some common membership functions, e. g. tri-
angular or trapezoidal membership functions.

3  Stability Analysis Based on Piecewise Fuzzy
Lyapunov Functions

In the piecewise Lyapunov functions approach, the global
state space is divided into several fuzzy regions by taking
advantage of the structure information of membership func-
tions in the premise rules'”"®. This treatment can be used
as the fuzzy Lyapunov functions for reference. Considering
the triangular or trapezoidal membership functions, some as-
sumptions are given.

Assumption 2 In any case, at most two fuzzy rules are
activated by the input vector. The membership function at
any point is

n

> M(z(1) =1

i=1
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where M(z(t)) is the membership function of the premise
variable, and n is the number of rules at one point.

Then, the whole premise space is divided into several re-
gions in the axes by the universe of fuzzy variables. Each
region between two points is called a fuzzy subregion S,.
An example about the segmentation of state space is illustra-
ted in Fig. 4.

M, M, My

-3 -2 -1 0 1 2 3

Fig.4 Membership functions and fuzzy subregions

Remark 8 It is worth noting that the segmentation
method of state space in this paper is different from that of
the piecewise Lyapunov functions approach.

In each fuzzy subregion, the membership functions are
continuous and derivable. The fuzzy Lyapunov functions
can be used to analyze stability of the system easily at this
time, and the stability result is presented in the following.

Theorem 3  Assuming that lipk < ¢, the continuous
open-loop affine fuzzy system of Eq. (2) is globally expo-
nentially stable in each fuzzy subregion S,(k=1, 2, ..., m;
m is the number of the fuzzy subregions) if there exists a set
of positive definite matrices P,, ..., P, which satisfy

, 1
Z @, P, + T(AJ'T" P, +P,A, +A,P, +P,A,) <0
P=
pk, ik, jk € L,
; | o N
Y o,.P, + ?(A;Pik +P, A, +AP, +P,A,) <0
p=1

pk, ik, jk e L,
9
where p=1,2;1<i<j<2.
Proof In the k-th fuzzy subregion §,, the local affine
fuzzy model is

X(1) ihik(z(t))Aikx(t) ik e L,

(10)

(1) ik e L,

Z hik(z( 1) A;kx( 1)

According to Eq. (6), the fuzzy Lyapunov function can-
didate of this fuzzy subregion is defined as

i h, (z(1))x"P,x ik e L,
Vi(x(n)) =" (11)
D hy (2(0)X'P,% ik e L,

Similarly, as the proving process of Theorem 2 is con-
cerned, assuming that iipk(z( 1)) S the time derivative of
V,(x) is easily obtained,

V.(x) =V,(x) +V, (x)

<
ikeL, ikel, ==

n

: 1
> N hhyx [ 21 QuPy + 5 (AP, +

i=1 =i

+

ikeL,

P,A, +ALP, +P,A,) ]x

. n 1 -
z z hikhjk x' [ zl GDka,)k + 7 (A;Pik +
e

i=1 =i

Pik Ajk +Z;€c Pik + ij Zik) ]‘i ikeL,
Therefore, when inequalities (9) hold, V, (x) is a fuzzy
Lyapunov function of the fuzzy subregion.
Especially, when n =1, the time derivative of the mem-
bership function 4,, =0, and the corresponding sufficient
condition for stability is

AP, +PA, <0 or AP, +P,A, <0

Define the characteristic function A, (x) of the fuzzy sub-
region S,:
1
Afx) = { Y e Sk.
0 otherwise

For the whole affine fuzzy system, the global fuzzy Lya-
punov functions can be constructed as

V(x) = 2 A () V(%)

If Theorem 3 holds, V(x) is strictly negative for all x #
0, and the affine fuzzy system is globally exponentially as-
ymptotically stable in the equilibrium state.

Example 2 Consider an affine fuzzy system similar to
example 1, and the system matrices are given as

a=a=[y Gbas0F

o mo =]

The membership functions are shown in Fig. 5. As men-
tioned above, Theorem 2 cannot be applied to this example.
Using Theorem 3 and choosing ¢,, =¢; =¢;s =0, ¢, = ¢,
=@, =@, =1, a set of positive definite matrices P, can be
computed by LMI optimization technology.

0. 409 8 0.0859 0.1114
p11=103><[0.0859 0.2364 —0.0943]
0.1114 -0.0943 1.0258
0.3407 0.0919 0.0815
ps =10 x|0.0919 0.2135 —0.0796]
0.0815 -0.0796 1.0224
630.6877 168.8295 151.664 0
) 29 =[168.8295 347.544 1 —122.2047]
151.6640 —122.2047 124.1348
542.3160  153.9656 125. 678 5
) =[153.9656 332.797 4 —119.9810]
125.6785 —119.9810 112.943 1
» =[126.0433 129.028 3
B 129.028 3 484. 666 4
» :[151.6448 190. 936 6
“ 190.936 6  664. 3442
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p, = 151. 644 8 190. 9366]
2 190.936 6 664. 3442

Thus, it can be verified that the system is exponentially
stable. The above method expands the application of the
fuzzy Lyapunov functions in analyzing the stability of the
affine fuzzy system.

4 Conclusion

A method which deals with the consequent part of the af-
fine fuzzy systems is introduced for stability analysis. The
sufficient stability conditions based on the fuzzy Lyapunov
functions and the modified common Lyapunov functions are
proposed. The results demonstrate that the stability result
based on fuzzy Lyapunov functions is less conservative.
Meanwhile, the sufficient stability conditions derived from
the consequent part processing method will reduce the stabil-
ity region compared with the method which does not expand
the consequent part. Furthermore, in order to expand the
application of fuzzy Lyapunov functions, the piecewise
fuzzy Lyapunov function is proposed.
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