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Abstract: In order to solve the fatigue damage identification
problem of helicopter moving components, a new approach for
acoustic emission ( AE) source type identification based on the
harmonic wavelet packet ( HWPT) feature extraction and the
hierarchy support vector machine ( H-SVM) classifier is
proposed. After a four-level decomposition of the HWPT, the
energy feature of AE signals in different frequency bands is
extracted, which overcomes the shortcomings of the traditional
wavelet packet including energy leakage, and inflexible
frequency band selection and different frequency resolutions on
different levels. The H-SVM classifier is trained with a subset
of the experimental data for known AE source types and tested
using the remaining set of data. The results of pressure-off
experiments on the specimens of carbon fiber materials indicate
that the proposed approach can effectively implement the AE
source type identification, and has a better performance in terms
of computational efficiency and identification accuracy than the
wavelet packet (WPT) feature extraction.
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ue to the fact that helicopter moving components easily
D produce fatigue damage such as cracks, which can se-
riously endanger the operating stability and the safety of hel-
icopters. It is necessary to monitor the initiation of cracks
and to master the developing trend of the cracks.

Acoustic emission (AE) is a noticeable choice of the non-
destructive testing methods due to its extremely high sensi-
tivity. AE has proved to be a very sensitive method for de-
fect recognition of composite materials which has been used
in typical application areas such as aerospace, vehicle indus-
try and infrastructure. The automatic recognition of defect
types based on AE signals has attracted much attention and
recently many studies have been published . In the AE
technique, the AE source type identification is used to deter-
mine the type of fatigue damage.

The AE source type identification is a typical pattern rec-
ognition problem, which includes two steps: feature extrac-
tion and pattern classification. AE signals are non-stationary
signals, so the traditional techniques in the time and fre-
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quency domains are not suitable. The wavelet transform
(WT) is demonstrated as an alternative tool for feature ex-
traction. The scaling operation in wavelet transform pro-
duces a series of wavelet functions with different window si-
zes, enabling multi-resolution analysis suitable for represen-
ting non-stationary signals. A major drawback of the wave-
let transform is its low-frequency resolution in the high fre-
quency region. The wavelet packet transform ( WPT), in
comparison, further decomposes the detailed information of
the signal, which has been successfully applied in the fea-
ture extraction of sensor fault and machine health diagno-
sis" ™. Of the various types of wavelets developed, the har-
monic wavelet possesses compact frequency expression and
has overcome shortcomings such as energy leakage, inflexi-
ble frequency band selection and different frequency resolu-
tions on different levels of the traditional wavelet'. So in
this paper, the harmonic wavelet packet transform is used to
extract the features of AE sources.

Numerous pattern recognition methods are developed
based on intelligent systems. Among them, the statistical
learning method and the artificial neural network ( ANN) are
mostly used in AE signals analyses of composite materials.
The ANN is widely applied in AE signal classification prob-
lems based on learning patterns from samples or empirical
data modeled in the last two decades ""'. However, as a
typical machine learning classifier, the ANN method is
based on the empirical risk minimization principle, which
has been recognized as a method that cannot always mini-
mize the actual risks. Meanwhile, the effectiveness of the
ANN methods is closely related to the number of training
samples. In most cases, it is difficult to obtain large sample
sets of AE signals in composite materials and the effective-
ness of the ANN methods can hardly be improved. In order
to overcome the disadvantages of the ANN, the support vec-
tor machine ( SVM) is used for the classification of AE
sources. The SVM based on the statistical learning theory
has high accuracy and good generalization capability. It is
very suitable for pattern recognition with small samples.

In this paper, we discuss the application of the harmonic
wavelet packet feature extraction and the support vector ma-
chine classification in AE source type identification, and
verify the algorithm using pressure-off experiments on the
specimens of carbon fiber materials.

1 Feature Extraction Based on Harmonic Wavelet
Packet

1.1 Harmonic wavelet

In essence, the wavelet transform characterizes the corre-
lation or similarity between the signal to be analyzed and the
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mother wavelet function. Such a correlation is expressed by
the wavelet coefficients associated with the wavelet trans-
form, which can be calculated through a correlation opera-
tion between the signal x(¢) and the conjugate w(t) of the
chosen mother wavelet w( 1) :

+o

W = [ x(nyw(z -ndr (1)

If the signal x(7) is closely correlated with the mother
wavelet w(t), the value of the wavelet coefficient w(t)
will be high, indicating a good match between the mother
wavelet and the signal being analyzed. As a result,
information embedded in the signal can be extracted by
analyzing the wavelet coefficients with local maxima. In
1993, Professor Newland "*”' from Cambridge University
proposed the harmonic wavelet which has ideal box-like
characteristics in the frequency domain. In this study,
the harmonic wavelet is chosen as the mother wavelet due
to the simplicity of its expression in the frequency
domain, which is defined as

ma<w<nmw

1
H, () ={21-r(n—m) (2)
0 otherwise

where m and n are the scale parameters. These parameters
are real but not necessarily integers. By taking the inverse
Fourier transform of H, ,(w), the time domain expression
of the harmonic wavelet is obtained,

e( in2mt) _ e( im2t)

h (t) =—7—F—— 3
w0 =5 (3)
If the harmonic wavelet is translated by a step k/(n — m)
and k e Z, in which k is the translation parameter, a gener-
alized expression that is centered at ¢ = k/(n — m) with a
bandwidth of 2(n — m) w can be written as

het=00) =
eXp[inZw(t—ﬁ)] —exp[imzﬂ(,_L)]
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(4)
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Based on the generalized expression, the harmonic wave-
let transform of a signal x(7) can be performed as

N-1

hwt(m, n, k) = n ;}mZx(r)hm'n(r __k

=0 n—m

)

where hwt(m, n, k) is the harmonic wavelet coefficient. By
the Fourier transform of Eq. (5), an equivalent expression
of the harmonic wavelet transform in the frequency domain
can be expressed as

HWT(m, n, w) = X(w)H, ,[(n -m)w] (6)

where X(w) is the Fourier transform of the signal x(#), and

H, .[(n-m)wlis the conjugate of H, ,[(n—-m)w], which
is the Fourier transform of the harmonic wavelet at the scale
(m, n). Since the harmonic wavelet has compact frequency

expression, as shown in Eq. (2), the harmonic wavelet
transform can be readily obtained through a pair of the Fou-
rier transform and inverse Fourier transform operations.

As shown in Fig. 1, after taking the Fourier transform of
a signal x(7) to obtain its frequency domain expression
X(w), the inner product HWT(m, n, ) of X(w) and the
conjugate of the harmonic wavelet H, ,[(n — m) w] at the
scale (m, n) are calculated. Finally, the harmonic wavelet
transform of the signal x(¢), denoted as hwt(m, n, k), is
obtained by taking the inverse Fourier transform of the inner
product HWT(m, n, o).

Signal x(n) ,n=0,1,--- ,N-1

X(w)

1
I:l H(w)=m s m2u< o< n2w

HWT(m,n, ®) =0, except X (w) H{(n—m) w)

IFFT

hwt(m,n,k) ,k=0,1,-- N-1

Fig.1 Algorithm for implementing harmonic wavelet transform
1.2 Harmonic wavelet packet algorithm

The scale parameter m and n determine the bandwidth that
the harmonic wavelet covers. Similar to the wavelet packet
transform (WPT), the number of frequency sub-bands for
the harmonic wavelet packet transform (HWPT) has to be s
powers of two, in which s corresponds to the decomposition
level for the WPT. Accordingly, the signal can be decom-
posed into 2° frequency sub-bands, with the bandwidth in
Hz for each sub-band defined by

_h
fband - 25 (7)

where f, is the highest frequency component of the signal to
be analyzed. Since the bandwidth of the harmonic wavelet is
2(n — m) m, the selection of the values for m and n of the
HWPT must satisfy the following conditions:

2(n-m)w =2mf, (3)

Thus, the harmonic wavelet coefficients

hwpt(s, 7, k) can be obtained as

packet

hwpt(s, i, k) =hwt(m, n, k) 9)

where i is the index of the sub-band, and k is the index of
the coefficient. The parameters m and n are required to sat-
isfy the following condition:

m=1if,,., Zi%, n:(i+l)fband:(i+1)%

(10)
where i =0,1, ...,2° -1 .
1.3 AE signal feature extraction

With the AE signal being decomposed into a number of
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sub-bands, features can be extracted from the harmonic
wavelet packet coefficients in each sub-band to provide in-
formation on the type of AE sources. Different energy dis-
tributions of signals at different frequency bands must be
caused by different information contained in the signals. For
the AE signal, it is because of different AE source features.
Therefore, the characteristic energy distribution coefficients
of the harmonic wavelet packet are used as the feature vec-
tors. The energy content of a signal can be calculated based
on the coefficients of the signal transform. In the case of a
HWPT, the coefficients hwpt(s, i, k) quantify the energy as-
sociated with each specific sub-band. The detail of the fea-
ture extraction procedure is shown as follows:
Step 1 Normalize the AE signal by

X=D]'[X-EX)] (11)

where X is the AE signal, E(X) and D_ are the mean and
standard deviation of X.

Step2  Decompose X with four levels of harmonic
wavelet packet transforms and obtain the coefficient vectors
of sixteen nodes, H,,, H, |, ..., H, s, where H, ; represents
hwpt(4,i, k), k=0,1,...,N—-1, and N is the length of the
AE signal.

Step 3 Calculate the energy of each node and normalize
them.

N
E, =[lH,, P =Y |H,,, I (12)
Jj=1

EH
(13)

15
NP

Step 4 The feature vector T = [EH“,EH“ JEy ---,EHJ ]
is used to identify the AE source types.

2 AE Source Identification Using Hierarchy SVM
Classifier

E, =

AE source identification is a typical pattern recognition
problem with small samples, because in most cases, it is
difficult to obtain large sample sets of AE signals in com-
posite materials to train the classifiers. In this paper, the
SVM is selected as the basic classifier, because it provides a
novel approach to the two-category classification problem
with good small sample generation "™/

There are two standard approaches to construct and com-
bine the results from binary classifiers for a C-class prob-
lem. The first is the one-versus-rest method, in which each
classifier distinguishes one class from the other C -1 clas-
ses, and the class label of the input is determined by the
winner-take-all method'”’. Each classifier needs to be
trained on the whole training set, and there is no guarantee
that good discrimination exists between one class and the re-
maining classes. The second standard approach to combine
binary classifiers is the one-versus-one method, in which the
decision is made by majority voting strategies. This requires
training and testing of C(C —1)/2 binary classifiers. This
approach is prohibitive when C is large "',

We choose a binary hierarchical classification structure as
shown in Fig. 2. Each node is a binary classifier, coarse

separation between classes occurs at the beginning ( at upper
levels) in the hierarchy and a finer classification decision
later (at lower levels). At the top node, we divide the orig-
inal four classes into two smaller groups of classes ( macro-
classes). This clustering procedure is repeated at subsequent
levels, until there is only one class in the final sub-group.
This hierarchical structure decomposes the problem into
three binary sub-problems. For testing, only about log,3
classifiers are required to traverse a path from top to bot-
tom.

Feature
vector

Matrix cracking

Fibers breaking

Interface separation

Fig. 2  Hierarchical multi-classification structure for AE source
identification

In this paper, standard k-means clustering is used to de-
sign the binary hierarchical structure, and Fig. 2 shows the
result. SVMI is used to classify normal versus other three
patterns, SVM2 is used to classify matrix cracking versus fi-
bers breaking, and SVM3 is used to classify fibers breaking
versus interface separation.

In the training phase, the training samples are grouped
according to Fig.2. Then SVMI to SVM3 are trained using
the corresponding group of training samples. After that, by
inputting the feature vector into the trained multi-classifier,
the AE source type can be identified.

3 Experiment and Results
3.1 Experimental setup

In order to verify the proposed method, a series of pres-
sure off experiments are carried out on the specimens of car-
bon fiber materials, which is one of the commonly used ma-
terials of helicopter moving components. Fig. 3 shows the
pressure-off experiment process on a carbon fiber specimen.
The dimensions of all the samples are 418 mm x 120 mm x
2 mm. Two AE sensors are distributed on the carbon fiber
specimen, one is an 80-mm distance away from the central
line of the specimen in the up direction, the other is an 80-
mm distance away from the central line of the specimen in
the down direction. The central point of the specimen is the
force point. The loading speed of the pressure off experi-
ment is 500 N/s. The AE signal measurement system is
shown schematically in Fig. 4. Signal conditioning is per-
formed by pre-amplifiers. The conditioning signal ( with a
gain of 40 dB) is fed to the main data-acquisition board, in
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which the AE waveforms and parameters are stored. The in-
strument and equipments used in the experiments are listed
below: MTS electro-hydraulic loading system ( MTS 810
material test system ) ; Vallen AMSY-5 AE signal acquisi-
tion system with 16 channels and a 16-bit, 10-MHz AD
converter on each channel; Vallen VS150-M AE sensor;
Vallen AEP4 pre-amplifier (20-2000 kHz) ; Vallen AE ap-
plication software Vallen Visual AE.

1—MTS electro-hydraulic loading system; 2—AE sensor 1
3—AE sensor 2 ; 4—Carbon fiber specimen
Fig.3 Pressure off experiment process on carbon fiber specimen

=

AMSY-5 system

O/@

AE sensor 1  Pre- amphﬁer 1(40dB)

O

AE sensor2  Pre-amplifier 2 (40 dB)

Fig.4 AE acquisition system employed on-site

The sample rate of the acquisition system is 1 MHz. In
order to acquire all the AE signals during the pressure off
process, AMSY-5 works under the continuous acquisition
mode. The pressure-off experiments are conducted on three
specimens of carbon fiber materials with the same dimen-
sions. For each AE source type, 50 groups of data are gath-
ered.

3.2 Feature extraction

First, the experiment of feature extraction is performed
according to the algorithm given in section 1. 3. Tab. 1
shows the feature nodes and their frequency ranges. The fre-
quency band for each feature node is 31. 25 kHz. Fig. 5
shows the normalized energy distribution for different AE
sources at 15 frequency sub-bands.

As shown in Fig.5, the energy distribution of the normal

Tab.1 Feature nodes and their frequency band range

Frequency band Frequency band

Feature nodes

number range/kHz
H, o 0 0 to 31.25
Hy, 1 31.25 to 62.50
H,, 2 62.50 to 93.75
Hy 5 13 40.625 to 43.75
Hy 4 14 43.75 to 468.75
H, s 15 468.75 to 500. 00

state is approximately uniform in each frequency band, be-
cause the AE signal of the normal state is approximately
white noise. The energy distribution of matrix cracking is
mainly concentrated in frequency bands 3, 4 and 5. The en-
ergy distribution of fibers breaking is mainly concentrated in
frequency bands 4, 5, 6, and 7. The energy distribution of
interface separation is broad, approximately from frequency
bands 3 to 8. Therefore, combining the above analyses, the
AE source types can be distinguished using the harmonic
wavelet packet energy features.

B Matrix cracking
Fibers breaking
Interface separation
B Normal

Normalized energy

S = N W wn

N AR

9 10 11 12 13 14 15
Frequency sub-band

56 78

Fig.5 Normalized energy distribution for different AE sources at
15 frequency sub-bands

3.3 AE source identification using H-SVM classifier

After the experiment of feature extraction, two groups of
data, the training samples and the testing data are acquired.
20 groups of data for each type are used as training samples,
and 30 groups of data for each type are used as testing data.
The H-SVM classifier is trained using the training samples
according to section 2. The kernel functions of the three
SVMs in the H-SVM classifier are selected as RBF kernels,

K(X,,X,) =exp( - X, -X,[F/0) (14)

The kernel width parameter, ¢ for each SVM, is selected
as 1. 0. Tab. 2 shows the AE source identification result
using HWPT and H-SVM. The results indicate that the pro-
posed approach can implement AE source type identification
effectively.

Tab.2 AE source identification result using HWPT and H-SVM

AE source type Test sample number Identification
(correct number) rate/ %
Matrix cracking 30(28) 93.33
Fibers breaking 30(27) 90.00
Interface separation 30(28) 93.33
Normal 30(30) 100. 00

In order to verify the advantages of HWPT feature extrac-
tion, the comparison of WPT feature extraction and H-SVM
classifier with HWPT and H-SVM is studied. For the WPT
feature extraction, the wavelet function is select as Dbl0,
and the decomposing level is 4. Similar to the HWPT fea-
ture extraction, the feature vector of the WPT is also the
normalized energy in each frequency band. Tab.3 shows the
comparison of feature extraction time for the HWPT and the
WPT. These algorithms are all implemented by Matlab 7. 1
on Intel Dual Core 2.4 GHz and 1 GB RAM. The results
indicate that the feature extraction speed of the HWPT is
over nine times as quick as the WPT. Such an advantage of
the HWPT over the WPT is even more appreciable when the
decomposition level is greater than 4, because of the addi-
tional recursive operations needed for the WPT.
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Tab.3 Feature extraction time comparison of HWPT and WPT

. Feature extraction time
Feature extraction method
for 50 sample/s
HWPT 0.65

WPT 5.88

Tab. 4 shows the comparison of AE source identification
result for HWPT and H-SVM with WPT and H-SVM. The
results indicate that the identification rate of HWPT and
H-SVM is a little higher than for that of WPT and H-SVM.
HWPT overcomes the energy leakage shortcoming of the tra-
ditional wavelet and can extract the energy features more ac-
curately.

Tab.4 AE source identification comparison of HWPT and
H-SVM with WPT and H-SVM

Identification rate/ %
HWPT and H-SVM WPT and H-SVM

AE source type

Matrix cracking 93.33 86.67
Fibers breaking 90.00 83.33
Interface separation 93.33 90.00
Normal 100. 00 100. 00

4 Conclusion

In this paper, the HWPT feature extraction and the H-
SVM classifier is first applied to the AE source identifica-
tion. The experimental system is set up and the pressure-off
experiments on the specimens of carbon fiber materials are
carried out. The comparison of the HWPT and the H-SVM
with the WPT and the H-SVM indicates that the proposed
approach can effectively implement AE source type
identification and has better performance in computational ef-
ficiency and identification accuracy than that of WPT feature
extraction. The efficient energy feature extraction ability and
better computational efficiency makes the HWPT a good can-
didate for efficient on-line AE source identification.
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