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Abstract: In order to reduce average arterial vehicle delay, a
novel distributed and coordinated traffic control algorithm is
developed using the multiple agent system and the reinforce
learning (RL). The RL is used to minimize average delay of
arterial vehicles by training the interaction ability between agents
and exterior environments. The Robertson platoon dispersion
model is embedded in the RL algorithm to precisely predict
platoon movements on arteries and then the reward function is
developed based on the dispersion model and delay equations
cited by HCM2000. The performance of the algorithm is
evaluated in a Matlab environment and comparisons between the
algorithm and the conventional coordination algorithm are
conducted in three different traffic load scenarios. Results show
that the proposed algorithm outperforms the conventional
algorithm in all the scenarios. Moreover, with the increase in
saturation degree, the performance is improved more
significantly. The results verify the feasibility and efficiency of
the established algorithm.
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s indicated in the newly released 2007 National Traffic

Signal Report Card, an optimally operated traffic sig-
nal can reduce traffic delays by 15% to 40%, fuel con-
sumption by up to 10%, and harmful emissions by up to
22%"'"". The signal coordination algorithm has become one
essential component of traffic control systems. There has
been a considerable amount of work on the subject of signal
coordination, and many valuable results have been
achieved. In general, these works can be broadly catego-
rized into two groups: 1) Signal coordination from the per-
spective of conventional traffic approaches. Studies in this
category employ traffic flow models to predict the platoon
arrival pattern at each intersection and then develop a func-
tion among performance indices (PI) such as vehicle delay,
stops, queue length and timing parameters'”™ . The offsets
among signals in the coordination subarea are optimized to
obtain optimal PI. Some well-known adaptive control sys-
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tems such as SCOOT and SCATS belong to this category'* .
2) Signal coordination from the perspective of artificial in-
telligence. With the advent of artificial intelligence ( Al),
some researchers attempted to apply the Al technique to the
traffic control field and also many results have been
achieved. Studies in this category emphasize the similarities
between Al and traffic control and solve the problem in the
traffic domain using the AI technique, such as multiple
agents, neural networks and fuzzy logic"”™ .

Due to the nonlinear and stochastic traffic processes in the
network, it is difficult to precisely develop mathematical
models for traffic control. However, some artificial intelli-
gence methods take advantages in dealing with the nonlinear
process, so recently many researchers have applied various
Al techniques to develop better traffic signal control meth-
ods.

Over the past few years, multiple agent systems ( MAS)
have become a crucial technology for effectively exploiting
the increasing availability of diverse and distributed informa-
tion sources. Researchers adopt numerous techniques and
use various tools to implement multi-agent systems for their
problem domains. Also, some researchers apply the MAS to
the traffic domain'""*'. For example, Ma et al.'” devel-
oped a signal coordination method based on the MAS tech-
nique, and game theory and social rules are applied to solve
the coordination between two adjacent intersections. Oliveira
and Camponogara'"’ proposed a framework for a network of
distributed agents to control nonlinear traffic systems. The
framework decomposed the optimization problem into small
subproblems to be solved by the agent network. Each agent
sensed and controlled the variables of its subsystems, while
communicating with agents in the vicinity to obtain neighbor-
hood variables and coordinate their actions. In Ref.[12],
multi-agent reinforce learning (RL) was applied to coordinate
traffic signals at six intersections by constructing a vehicle-
based model. Given different settings of traffic lights, the RL
system estimates expected waiting time for cars.

Present studies mainly focus on developing architectures
for the control system and establishing the relationship be-
tween MAS and traffic control. In fact, the communications
between adjacent agents are determined by the traffic pla-
toon that departs from the upstream stop line and moves to-
wards a downstream signal. However, current studies ignore
this essential feature of arterial traffic flow and the commu-
nications are not treated in detail. In the authors’ opinion,
basic traffic characteristics should be paid more attention to
and only in such a way can traffic problems be solved. The
main objective of this research is to address the weaknesses
of current studies and develop a new signal coordination al-
gorithm based on the MAS technique.
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1 System Model
1.1 Architecture of distributed signal coordination system

Take one subarea that includes three signalized intersec-

tions as an example. The system is composed of two levels
of agents: local agent and central agent. Each level of agent
contains different modules and bases. The architecture of
the system is shown in Fig. 1.
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Fig.1 Architecture of the distributed signal coordination system

1.1.1 Local agent

An isolated intersection in the subarea is designed as a lo-
cal agent. It only carries out some simple functions such as
detecting traffic flow information by local detectors and exe-
cuting timing schemes that are assigned by the central
agent. It includes the following two basic modules.

e Perceiving module The system perceives the dynam-
ic changes in traffic conditions depending on loop detectors
located on approach lanes of a local intersection. The detec-
tors detect the traffic volume, vehicle speeds and occupation
rates data and send these data to a signal controller.

e Executing module The central agent assigns optimal
coordination schemes to the local agents. The local agents
execute these schemes by dynamically changing the display
of signal lights according to the schemes.

1.1.2 Central agent

The critical signal controller in the subarea or the signal
control center is designated as the central agent. The central
agent is the core of the distributed system and functions such
as calculating optimal timing schemes for local agents, de-
termining timing schemes ( common cycle length, green
split, offsets) for a subarea, and scheme assignments to lo-
cal agents are realized by it. It includes the following mod-
ules:

e Communication module This module refers to the
communication links of the system. It can upload traffic da-
ta obtained by a perceiving module to the central agent and
download timing schemes from the central agent to local
agents.

e Rule base The rule base stores general signal control
information, such as signal control rules, link lengths, the
number of approaches, saturation flow rates and the number
of adjacent intersections.

e Memory base The memory base stores the historical
traffic flow information and timing schemes and updates
these data dynamically.

e Learning module This module learns from both traf-
fic flow information and evaluation information and then ob-
tains quantitative data, which can provide a theoretical foun-
dation for the inference module.

¢ Inference module Based on the rule base of agents,
this module estimates the dynamic changes in system states
according to exterior information provided by a perceiving
module. Then the inference module infers the optimal strat-
egy for the distributed signal coordination system.

e Decision-making module Based on the information
provided by the inference module, this module produces a
set of optimal strategies. It also determines the optimal
download occasion of timing schemes.

1.2 Definition of the RL elements

An RL problem refers to system states, actions and rewards.
1.2.1 System states

A mixed state representation that combines information at
the controlled intersection is used. The general form of the
equation that defines the state is as follows:

St = (X5, v} (D)
sz{x’]‘,x;‘,...,x:} (2)
Vi={v, vy, v} (3)

where S is the system state in time step k; X" is the satura-
tion degree vector; x| is the saturation degree of intersection
i; n is the number of intersections in a subarea; V* is the
volume vector; vf.‘ is the volume of the critical lane of the
coordination phase in intersection i.
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The reason for choosing these two factors is mainly because
the saturation degree can reflect the traffic load of each inter-
section and is closely related to traffic volume, queue length,
vehicle delay and speed. These performance indices refer to the
whole state of the system. The volume of the critical lane of
the coordination phase is related to the arriving platoon size and
the assigned green time for the coordination phase, and both of
them can affect coordination benefits.

1.2.2 Action set

The system takes an action each time step to reduce aver-
age vehicle delay in the subarea. Cycle length and offset are
adjusted and actions include two aspects. One is to increase
the common cycle length by 3 s, keep the current common
cycle length, and decrease the common cycle length by 3 s.
So the change set of the cycle length at each decision step is
[ +3, 0, —3]. The reason for choosing 3 s as the unit step
length is that for large vehicles 2 s is less and 4 s is superflu-
ous. The other one is to increase the offset by 3 s, keep the
current offset, and decrease the offset by 3 s. So the change
set of offset at each decision step is also [ +3, 0, -3].
1.2.3 Reward function

The reward function is the most important component of
the RL algorithm. Q learning, one of the most popular RL
algorithms, is employed. Average vehicle delay in the sub-
area is used as a value function.

At isolated intersections, vehicles are usually regarded as
arriving randomly. However, at arterial intersections, vehi-
cles are affected by the signal lights and arrival rules of iso-
lated intersections are not suitable for coordinated intersec-
tions. On an arterial link, vehicles are grouped into a pla-
toon and one obvious characteristic of them is platoon dis-
persion. The Robertson dispersion model is usually used to
depict the dispersion level and the model is shown as'"’

m@w=2mwﬁm—m“* (4)

where F =1/(1 +0. 35¢) is the platoon dispersion factor; ¢
is 0. 8 times the travel time between two observation points
in a unit time interval; v,(p) is the number of arriving vehi-
cles at the downstream observation point during time interval
p; v,(k) is the number of departure vehicles at the upstream
observation point during time interval k.

The dispersion phenomenon can be depicted by Fig.2. At
the upstream point, when vehicles discharging during the
green phase, the initial platoon is compact and the platoon
length (time interval between the leading vehicle and tailing
vehicle) is small. When traveling to the downstream inter-
section, the platoon disperses to some extent. The average
arrival volume per time interval becomes smaller than be-
fore.
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Fig.2 Illustration of platoon dispersion on artery. (a) Upstream

point; (b) Downstream point

The objective of this coordination system is to reduce ar-
terial vehicle delay, so the first step is to develop a delay
function. The delay of arterial vehicles is closely related to
their arrival pattern at the intersection, and the Robertson
dispersion model can be used for this because it can predict
the vehicle arrival pattern at the downstream intersection.

HCM2000 provides a simple equation to calculate vehicle
delay at arterial intersections, and the equation is shown as
follows' "'

D=D,(Py) +D, +D, (5)

where D is the control delay per vehicle, s/veh; D, is the
uniform control delay, s/veh; P is the uniform delay pro-
gression adjustment factor, which accounts for the effects of
signal progression; D, is the random control delay, s/veh;
D, is the initial queue delay, s/veh, and it is usually ig-
nored when there is no initial queue vehicle at the beginning
of each cycle.

0.5C(1 -g/C)*

Dlzl—min(l,Ds)(g/C) (6)
_(1-Pf,
F — l—g/C (7)

8eD
D, =900T - -1)? s 8
> [(DS D+ [(D,-1) +CAPT] (8)

where C is the common cycle length, s; g is the effective
green time for the study phase, s; D, is the saturation de-
gree; P is the proportion of vehicles arriving during the
green phase; f, is the supplemental adjustment factor for
platoon arriving during the green phase, and it can be deter-
mined by looking up tables in HCM2000; T is the duration
of the analysis period, h; C,, is the capacity of the ap-
proach lane, veh/h; e is the adjustment factor and the rec-
ommended value is 0.5, and it can also be determined by
looking up in the tables.

From Egs. (4) to (8), we can find that factor Py is the
key point for calculating D and it is related to P. If P is de-
termined, then D can be obtained directly. P is the propor-
tion of vehicles arriving during the green phase and it is af-
fected by the discharging time at the upstream intersection,
the link travel time and the dispersion level. As illustrated in
Fig. 2, the Robertson dispersion model can efficiently deal
with these factors and P can be calculated by the model.

Based on the above analysis, the value function used in
this paper is

Po=3 r= X 9)

i=1 =1 j=1

where P, is the performance index, and it represents the av-
erage vehicle delay of arterial vehicles; n is the number of
intersections in the subarea; D, is the sum of average vehicle
delay of all coordinated directions at intersection i; m is the
number of coordinated directions; Dj is the average vehicle
delay of coordinated direction j.

Based on the above function, the reward is defined as

k k+1
k+l _ PI_PI

= 10
max(P;, P,*") (10)
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The reward ranges from — 1 to 1, where positive reward
values are received if the delay of decision time step k + 1 is
lower than that of time step k.

Given a perceived state, Q learning is utilized to quantify
the preference and effectiveness of selecting an action. Fol-
lowing every selection of an action, the corresponding Q
value is updated as

O(s,, a)«—0(s,, a,) +

al ' +ymax O(s,,,,a) - Q(s,.,»a)]

(11)

where « is the learning rate; v is the discount rate for the re-
wards; a, is the action executed while in state s, leading to

the subsequent state s,,,, and yielding a reward r**'

2 Simulation Experiment
2.1 Simulation environment

The test road network consists of three signalized intersec-
tions. Sketches of the network and the phase diagrams are
shown in Fig. 3. Each intersection contains three phases and
phase 2 is selected as the coordinated phase. The saturation
flow rate of the approach lane is 1 800 pcu/h; the lost green
time of each phase is 3 s; the average vehicle speed is set as
50 km/h; the minimum and maximum cycle lengths are set
as 70 and 120 s, respectively.

m | |i| | m | Phaselz\>:__
= 4 — Al — B|:Phase2_//_
| m 380 m

|! m 500 m ! m IPhase 3)¢\\¢(

Fig.3 Sketches of the test network and phase diagrams

—]

To compare the benefits of the established algorithm, two
algorithms are tested in this paper.

e Base algorithm

It is the conventional arterial progression algorithm with-
out agents. Cycle length is determined by the Webster mod-
el. Offsets among intersections are determined by the nu-
merical method.

e Distributed algorithm

It is the established algorithm in this paper. The learning
rate o is set as 0. 5; and the discount rate vy is set as 0. 95.
At the end of each cycle, the central agent makes a decision
about the next action. Because the cycle length may be ex-
tended or shortened, the decision interval is not fixed.

In order to study the impact of network traffic load on
control benefits, the following three sets of simulation sce-
narios are investigated in this paper: 1) Scenario 1, inter-
section saturation degree equals 0. 7; 2) Scenario 2, inter-
section saturation degree equals 0. 8; 3) Scenario 3, inter-
section saturation degree equals 0. 9. Generally, when satu-
ration degree is smaller than 0. 7, the traffic load is so low
that adjacent intersections cannot be coordinated. And when
it is greater than 0.9, the traffic is on the edge of conges-
tion, and signal coordination is not feasible.

2.2 Experimental results and analysis

In the Matlab environment, vehicles are generated using
Poisson processes with predefined average arrival rates at the
entrances of the network. Simulation duration lasts 4 h. The

first 3 h are used to calibrate parameters of the distributed al-
gorithm and in the last 1 h, evaluation data are collected ev-
ery 5 min. Statistical data of the two algorithms in three dif-
ferent scenarios are shown in Fig.4 to Fig. 6.
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The plots given in Fig. 4 show the network performance
measured for scenario 1. During the simulation period, the
average delay of the distributed algorithm is smaller than
that of the base algorithm. Using the agents, the evaluation
index is reduced by approximately 10. 3% . For scenarios 2
and 3, the indices are reduced by 11.5% and 13. 1%, re-
spectively. The data also indicate that with the increase in
saturation degree, the distributed algorithm performs more
efficiently than the base algorithm. To a certain extent, this
proves that the multiple agent architecture adapts itself ac-
cording to the changing dynamics of the traffic network.

3 Conclusion

In this paper, a novel traffic coordination algorithm is
developed using a cooperative multiple agent architec-
ture. The uniqueness of this algorithm lies in the embed-
ment of the Robertson platoon dispersion model, which
can capture the dynamic movement characteristics of traf-
fic flows on arteries. The performance of the algorithm is
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evaluated in a Matlab environment and the results show
that it outperforms the conventional signal coordination
algorithm in three traffic load scenarios. The promising
results obtained in this paper provide a foundation for fur-
ther applications of similar cooperative features in multi-
ple agent systems.
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