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Abstract: In order to evaluate the practicality and effectiveness
of the turn-based algorithm for logit loading ( TALL), the
TALL is implemented using C ++, and it is compared with a
combination of the network-expanding method and the Dial
algorithm based on the analysis of algorithm procedures. The
TALL wuses the arc-labeling shortest path searching,
bidirectional star and the deque structure to directly assign the
traffic flow, while the Dial algorithm should be used in an
expanded network. The test results over realistic networks of
eight cities show the superior performance of the TALL
algorithm over the combination of the network-expanding
method and the Dial algorithm, and the average processing time
is reduced by 55. 4% . Furthermore, it is found that the
operational efficiency of the TALL relates to the original
densities of the cities. The average processing time is reduced
by 65. 1% when the original density is about 14%, but the
advantage of the TALL is not obvious with the increase in the
original density.
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ptimization of traffic management, as an effective

method to reducing traffic jams, depends on traffic
assignment to a large extent. According to the flow aggrega-
tion level in equilibration, the traffic assignment algorithms
can be classified as route-based or origin-based'’. In the
route-flow-based algorithm, the Dial algorithm' which is
also named the STOCH algorithm can effectively implement
logit-type network loading, i.e. logit traffic assignment in
networks with fixed link costs. The Dial method obviates
path enumeration and forms a part of various algorithms for
finding stochastic user equilibrium ( SUE) assignment in
networks where congestion plays a role.

In addition, some algorithms also obviate path enumera-
tion and find SUE assignment in networks"”™ . The Bell
method'” applied a wide-scale matrix whose order is equal
to the number of nodes, and, as a result, this method occu-
pies too much memory space on computers for implementa-
tion. Akamatsu'”’ designed a transition probability matrix
and simply weighted the parths in a heuristic way without
optimizing the total expected travel cost. Bertsekas et
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al. ™ focused on the original flows which were represented
by proportions of traffic arriving at each node from their
predecessor links. Yu'" studied a class of bush-based algo-
rithms (BA) for the user equilibrium (UE) traffic assign-
ment problem, which produced precise solutions by exploi-
ting the acyclicity of UE flows.

However, few algorithms directly deal with turn delays
and turn flows, which are of great importance in congested
urban road networks. Damberg et al. " provided a random
assignment method based on column generation for directly
solving the path flow, but the high requirement of storage
space became the key obstacle of this type of method in ap-
plication. An indirect method of converting actual turns in
the original network into dummy links is widely applicable
when turn delays and turn flows exist in the original net-
work. Based on this method, the conventional algorithms
such as the Dial algorithm can be used in an expanded net-
work"' ™ | Nevertheless, the network-expanding method
has serious disadvantages. Ren and Wang'”' developed a
new algorithm: a turn-based algorithm for logit loading
(TALL), which differs from the network-expanding meth-
od. The TALL algorithm not only agrees with the logit
path-choice process but also takes the effect of turn delays
on traffic assignment into account.

The purpose of this paper is to evaluate the practicality
and effectiveness of the TALL by means of implementing
the TALL algorithm using C ++. And the TALL algorithm
is compared with a combination of the network-expanding
method and the Dial algorithm.

1 Algorithm Description
1.1 Deficiencies of network-expanding method

In the network-expanding method"®, real turns in the
original network are converted into dummy links, and the
conventional traffic assignment algorithms such as the Dial
algorithm can be used in the expanded network.

We can discover some of the problems caused by expan-
sion. First, the network-expanding method increases the
size of networks too much by adding dummy links and
nodes. In Fig. 1, nodes in the expanded network increase
from one to seven and links increase from seven to sixteen.
The expansion results in redundant computational time and
increased memory for large-scale networks. Secondly, the
original network topology which is indispensable for route-
choice analysis is destroyed. In other words, the topologies
of the original network and the expanded network should be
maintained at the same time. Thus, the network-expanding
method is surely not the best choice for network models with
turn delays.
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Fig.1 Illustration of network-expanding. (a) A 4-leg intersection
with link b allowing U-turn; (b) The corresponding expanded network

1.2 TALL algorithm

1.2.1 Notations

Given a transport network G = (N, A) defined by the
node set N = {i}, the directed link set A = {a=(i, j)}EN
x N, the turn set 7= {a—b} CA x A (here let a—b denote
the turning movement from link a to link b), the trip origin
set R = {r} CN, the trip destination set S = {s} ©N and the
origin-destination ( O-D) pair set W = {r-s} CR x S. For
each link a € A, let F(a) be the set of links adjacent to a
and B(a) the set of links adjacent from a. If a = (i, j),
F(a) is actually the set of the outgoing links of node j, and
B(a) is the set of the incoming links of node i. Namely,
for each link a = (i, j) €A, let F(a) ={(j, m) e A:me N}
and B(a) ={(n, i) e A: neN}.

1.2.2 Concept of node-to-link path

In order to exploit turn delays to assign traffic flows, a
new concept of the node-to-link path is given, which is a
little different from the regular node-to-node path. For a di-
rected graph G, a path from a node r to a link a is the one
that starts from r, goes by intermediate nodes, and finally
arrives at i and j in succession. In fact, a node-to-link path
differs from a node-to-node path in nothing but in that its
last node must be the head of this link and its second to last
node must be the tail of this link.

Subsequently, we present the concepts of efficient turn
and efficient path. Given an O-D pair r-s, for each link a,
let r(a) represent the shortest path cost from the origin node
r to link a. The algorithm defines a turn a—b as “efficient”
if r(a) <r(b); that is, an efficient turn takes the traveler
further away from the origin. Thus, a path between r-s is an
“efficient” one if it only includes efficient turns. Note that a
path is also regarded as a series of turns as well as a series
of links or nodes. Furthermore, the costs of each path in
networks with turn delays should include the delays of all
the turns on that path as well as the costs of all the links on
the path, and, hence, it can be expressed as

o = 218+ D dydn,  Vrsk (D)

a a—b

where c;’ is the travel cost of path k between the O-D pair
from r to s; ¢, is the travel cost (or referred to as general-
ized cost) of link a; d, is the delay of turn a—b; 5, is the
indicator variable of path-link incidence, satisfying &, =1
if link a is on path k between the O-D pair r-s, otherwise
&0, =03; ¢, is the indicator variable of path-turn inci-

rs

dence, satisfying ¢,

ab, k

=1 if turn a—b is on path k between
the O-D pair r-s, otherwise ¢, , =0.

rs

It should be noted that equation ¢),, =&, 5, , always
holds because turn a—b belongs to path k between the O-D
pair r-s if and only if two adjacent links constitute this turn.
1.2.3 Algorithm steps

For a complete logit-type network loading, the algorithm
executes the following steps:

Step 1 Initialization

1) For each origin r, add a dummy node ' and a dummy
link y =(r', r) with t,=0, and then add a dummy turn y—
b with d , =0 for each b e F(y). For each destination s,
add a dummy node s’ and a dummy link £ = (s, s") with ¢,
=0, and then add a dummy turn b—{ with d,, =0 for each
beB({).

2) Set x, =0 for each link a, and set y, =0 for each turn
a—b, where x_ is the flow on link a;y,, is the flow on turn
a—b.

Note that the dummy nodes, links and turns added in step
1 are used to map the node-oriented origins and destinations
to certain links, because the proposed algorithm is link-
oriented other than the traditional node-oriented. In fact,
dummy link y and { just act as origin r and destination s,
respectively, from a link-oriented perspective. However,
the dummy elements have a small size proportional to the
number of the trip origins and destinations, and actually are
not indispensable to the algorithm.

Step 2 Preliminaries for current origin r

1) Compute the shortest path costs from r’ to all the
links. This yields r(a) for each a, especially r(y) =0 and
1) ==, VY.

2) Compute the likelihood L, for each turn a—b, where

€
Lab = {0

Step 3 Forward pass to compute turn weights

Process links in an ascending order of r(a), starting with
v. Namely, for each link a, compute the turn weight w
for each b e F(a), where

-o0(d,+1,)

r(a) <r(b)
otherwise

(2)

a=vy
otherwise

Lab (3)
w =
“ {Lub z w('a

Step 4 Backward pass to assign turn flows

Process links in a descending order of r(b), starting with
the most distant link. Namely, for each link b, compute the
link flow due to r, x,, and the turn flow due to r, y,, for
each a € B(b), where

oo {qm beég 4
’ Y, v otherwise
ceF(b)
r r W,
Vo =X, (5
Wch

ceB(b)

where x, is the flow on link » due to origin r; g,, is the trav-
el demand between the O-D pair r-s; and y, is the flow on
turn a—b due to origin r.

Step 5 Flow accumulation

1) Set x, =x, + x, for each link a, and set y,b =y,b +
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y,b" for each turn a—b.
2) If r is the last origin, stop; otherwise, let r be the
next origin and go to step 1.

2 Algorithm Implementation

Detailed implementation of the network-expanding meth-
od, mainly data structures and algorithmic steps, is rare in
existing literature. In this part, the network expanding pro-
cedure, bidirectional star and shortest path searching for
both the TALL algorithm and the combination of the net-
work-expanding method and the Dial algorithm are intro-
duced in detail. Some codes of C + + style are to be demon-
strated when necessary.

2.1 Network expanding procedure
2.1.1 Key steps

Step 1 Establish dummy nodes

Split each node up into some dummy nodes and update
the head node or the tail node of the links concerned. The
corresponding relationship between the original nodes and
the nodes in the expanded network is shown as follows:

for(i=1; i< =n; i++)
{ din = GetInArcs( i, inArcs) ;
dout = GetOutArcs( i, outArcs) ;
if(din = =0)
{
relation[ /] [0] = + + num;

}
else if (dout = =0)//din! =0

relation[ i] [ countl] =num;
}
}
else//din! =0, dout! =0
{
for( countl =0; countl < din; countl ++)
relation[ i] [ countl] = + + num;
for( count2 =0; count2 < dout; count2 + +)
relation[ {] [ din + count2] = + + num;
}
}
Step 2  Establish dummy links
Add dummy links for each turn, as shown in Fig. 2,
where d,, and d, are backward and forward adjacent nodes.

doutZ odolltZ
/
[
o foi ey ol
Node i in2 /
.
/
o
it diny
() (b)

O Original node; @ Dummy node

— — Dummy links; ,-~ Dummy link for turn
Fig. 2
for turn. (a) Node i and adjacent nodes in origin network; (b) Expanded
network with corresponding dummy links for turn

[lustration of converting original node into dummy link

2.1.2 Topological relationship analysis
Tab. 1 lists the numbers of nodes, links and turns in net-

{ works used for different methods. From Tab. 1, we can find
++ num; that the network-expanding method completely destroys the
for( countl =0; countl < din; ountl ++) topological relationship of the origin network. And the net-
{ work used in the TALL algorithm maintains the same topol-

ogical relationship.
Tab.1 Comparison of topological relationship
Network Node number Link number Turn number
Original network n m t

n

n+ Y [din (i) +doy ()]

1

Expanded network

Network used in TALL n+o+d

n

mo+ Y [dig (i) X oy ()]

i=1

N/A

m+o+d

I+ Zdoul(r) + Zdin(s)
reR ses

Note: n, m, t, o and d mean the number of nodes, links, turns, origins and destinations in the original network, respectively. Usually, o and

d are much less than n.

In regular transportation networks, the in-degree and the
out-degree of each node usually approximate to three, which
means d,, =d ,~3. As a result, the node number and the
link number in the expanded network increase to 7n and m
+9n, while those in the network used in the TALL algo-
rithm are much smaller.

2.2 Bidirectional star

Because forward and backward adjacency relationships of
nodes and links are necessary to the Dial algorithm and the
TALL algorithm, the expanded network is represented by a
node-based bidirectional star, which consists of a forward
star (i.e. an adjacent list stored in an array structure) and a
backward star, while the original network is represented by
a link-based bidirectional star which incorporates turning

movement.
2.2.1 Node-based bidirectional star for the Dial algo-
rithm

In the node-based star, the nodes are stored in the array
and a single list is established to record adjacent nodes for
each node. The forward star is established as follows:

Step 1 Read a pair of O-D from the O-D list.

Step 2 If the current node i is the destination, insert a
dummy arc.
Step 3  If the current node is the origin or any other

node but not the destination, insert a dummy link from the
origin to the destination.

Step 4 If the last O-D pair is read, stop; otherwise, go
back to step 1.

The complementation code is shown as follows:
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ifile>>tfnode>>ttnode>>tcost;
if(tfnode! = cnode)//cnode = current node

{

for(i = cnode; ¢ < tfnode; i++)

{
If(nlist[ ] . dflag! =0)//cnode is destination
{
llist[ a] . fnode = i;
llist[ a] . tnode = n + o + nlist[ {] . dflag;
}
cnode = tfnode;
list[ a] . fnode = tfnode;
1list[ a] . tnode = ttnode;
}
}
else
{

llist[ a] . fnode = tfnode;
1list[ a] . tnode = ttnode;
}

}

When the forward star is established, the corresponding
backward star is formed at the same time. A reverse cycle
of forward search can be used to form the list.

2.2.2 Link-based bidirectional star for TALL algorithm

Based on a node-based star, a link-based star is estab-
lished as follows:

for(i=1; i< =N; i++)
{
k, = GetOutArcs( i, outArcs) ; //adjacent node of i
for(j =05 j<k;; j++)
{
a = outArcs[ j]; //list of adjacent nodes of j
list[ a] . fptr = u;
k, = GetOutArcs(llist[ a] . tnode, inArcs) ;
for(k=0; k<k,; k++)

{
tlist[ u] . farc = a;
tlist[ u] . tarc = inArcs[ k] ;
u++;

}

}
2.3 Shortest path searching

Shortest path searching is a core procedure in the network
loading algorithm. A label-correcting shortest path algo-
rithm using the deque structure is implemented in the Dial
algorithm, and an arc-labeling version is used in the TALL.
2.3.1 Deque manipulation for the Dial algorithm

Deque Q can be viewed as a combination of stack S and
queue Q'. Elements insertion and deletion follow two prin-
ciples: 1) When a node is added for the first time, list it at
the bottom of queue Q'. If a node is added for the second
time, list it at the top of stack S and mark the value as - 1.
2) When S is empty, delete the top element in Q’, other-
wise delete the top element of S.

The practical steps are shown as follows:

Step 1 Initialization

For each node, set the minimum cost at infinity and set
deque empty.

Step 2 Seek the minimum cost

At the beginning of a cycle, regard the current node i as
the top element of the deque. Then seek the adjacent nodes j
of i, and choose the minimum cost of link (i, j).

Step 3 Add j into the deque.

1) If j is added into the deque for the first time, list j at
the bottom of queue Q' and let top =j.

2) If the marked value of j is —1, then let top =j directly.

Step 4 If the top element is the last node, stop; other-
wise, go back to step 2.

The deuge structure improves the efficiency of the shortest
path algorithm due to the following advantages: 1) Avoid
enumeration because the shortest path searching starts from
one node instead of from all of them; 2) Only the nodes
which do not exist in stack S are to be scanned, so repeated
calculation will be avoided; 3) Nodes are stored in order
and using the last-in-first-out (LIFO) principle, the search
efficiency can be improved.

2.3.2 Deque manipulation for TALL algorithm

Based on the deque structure used in the Dial algorithm,
we take turn delays into consideration. From this point of
view, the minimum cost should include link costs and turn
delays. The pseudocode form of deque manipulation used in
the TALL algorithm is shown as follows:

While (Deque is not empty)
{//Initialization

//Seek the minimum cost
For (access all adjacent links of a)
{

If (SPTlist[ b] . dist > SPTlist[ a] . dist + llist[ b]. cost +
tlist[ u] . cost), then ( SPTlist[ b]. dist = SPTlist[ a]. dist +
Ilist[ b] . cost + tlist[ u] . cost

If b is added into deque for the first time, then bottom
=b and top = b; if b is not added for the first time, then
top=b

}

3 Performance Testing
3.1 Data set and testing environment

The performance of the TALL algorithm is evaluated in
comparison with the Dial algorithm over a set of real net-
works which contain the number of nodes, links and turns,
as shown in Tab. 2. The data set of two Chinese networks
and six popular networks available on the website ( http: //
www. bgu. ac. i/ ~ bargera/tntp/) are used for testing.

This evaluation is performed as follows: For each net-
work, a logit network loading is implemented by the Dial
algorithm with the expanded network, and the other loading
is implemented by applying the TALL algorithm with the
original network. To achieve better time efficiency and
guarantee the comparability, we choose sub-algorithms and
data structures carefully as mentioned in section 2.

In addition, the evaluation is performed under user mode
of Windows XP, and the platform is a work station with a
2.93 GHz Inter(R) E7500 processor and 2 GB memory.
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Tab.2 Characteristics of test network

Network Number of nodes Number of links Number of turns O-D pair Original density of O-D pairs/%
Sioux Falls 24 76 254 24 x24 100
Zhenjiang 252 814 2810 65 x 65 25.8
Anaheim 416 914 2 646 38 x38 9.1
Zhengzhou 317 1076 3862 100 x 100 3L.5
Winnipeg 1052 2 848 8434 147 x 147 14.0
Chicago sketch 933 2950 13116 387 x 387 41.5
Chicago regional 12982 39018 135302 1790 x 1790 13.8
Philadelphia 13 389 40 003 136 483 1525 x1525 11.4
3.2 Results and analysis o ;‘g (3.087 3514 3.353
3.2.1 Evaluation of execution time E 3.0 270 2.614 5491
In this evaluation, we obtain the average execution times % %g i
required for a logit network loading by two solutions, i. e. Z 15k
the TALL algorithm on the original network and the Dial al- g 1.0
gorithm with network expanding by a great deal of testing. & 0‘(5) . . . . . .
From Fig. 3, it is apparent that the TALL algorithm has bet- 0 1 2 3 4 5 6
ter performance in execution time. Cities

» 60 —&@— Dial with expanded network
3 j g —m— TALL with original network
230
g%g 20
£ 10
0 *
1 2 3 4 5 6

Cities( O-D pairs)
1— Sioux Falls (24); 2— Anaheim (38 ); 3—Zhenjiang (65)
4— Zhengzhou (100 ); 5—Winnipeg (147 ) ; 6— Chicago sketch (387)

Fig.3 Comparison of execution time

Meanwhile, the results of tests on large-scale networks
such as Chicago regional and Philadelphia show that the pro-
cessing time ratios of the two algorithms are 3.287 and
3.514, which indicates that the TALL algorithm is effective
for large-scale networks.

3.2.2 Analysis of original density

For comparison, we calculate the ratio of execution times
of the Dial algorithm and the expanded network to that of
the TALL algorithm, as shown in Fig. 4. Since all the fig-
ures of the ratio exceed one, they demonstrate the superiori-
ty of the TALL algorithm over the Dial algorithm/expanded
network combination on eight different networks of various
scales from small to large. Meanwhile, the TALL algorithm
also has good performance in large scales of networks.
From Fig. 4, the execution time ratios (combination of Dial
and network expanding/TALL) are 3. 287 and 3. 514 when
O-D pairs are 1 525 and 1 790. This is because wide net-
works require more time to expand original networks.

Moreover, we find that the advantage of the TALL algo-
rithm is not obvious with the increase in the original densi-
ty. This is because, in that case, additional execution times
for converting the node-oriented origins and destinations to
the corresponding links will increase much more, and more
time will be spent for calculation. According to the data in
Tab. 2, it is clear that the ratio reaches a peak of 3.514
when the original density is 13. 8%, and it has a better ex-
pansibility when the original density is about 14% .

1— Philadelphia; 2— Chicago region; 3— Winnipeg
4— Zhenjiang; 5— Zhengzhou’ 6— Chicago sketch

Fig.4 Processing time ratio of two solutions

4 Conclusion

The TALL algorithm deals with turn delays and turn
flows in an explicit and direct way and avoids the disadvan-
tages of the conventional method. The testing results on
some real networks confirm the superior performance of the
TALL algorithm, in terms of time efficiency, over the com-
bination of the network-expanding method and the Dial al-
gorithm. Furthermore, the TALL algorithm has good per-
formance on large-scale networks and better performance
when the original density is about 14% .
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