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Abstract: A t-covering array of size N, degree k, order v and
strength 7 is an N x k array with entries from a set of v symbols
such that any N x ¢ subarray contains a t-tuple of v symbols at
least once as a row. This paper presents a new algebraic
recursive method for constructing covering arrays based on
difference matrices. The method can extend parameter factors
on the existing covering arrays and cover all the combinations of
any ¢ parameter factors (#=2). The method, which recursively
generates high strength covering arrays, 1is practical.
Meanwhile, the theoretical derivation and realization of the
proposed algebraic recursive algorithm are given.
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t-covering array of size N, degree k, order v and
A strength ¢ is an N X k array with entries from a set of v
symbols such that any N x ¢ subarray contains a z-tuple of v
symbols at least once as a row (#=2). We denote such an
array by CA(N;t, k, v). The covering array is optimal if it
has the smallest possible number of N rows. This number is
the covering array number, that is CAN(¢, k, v) = min{N:
3 CA(N;t, k,v) }. Covering arrays can be viewed as a gen-
eralization of orthogonal arrays. In fact, if we require that
each N x t subarray contains a z-tuple of symbols exactly A
times, then we have a t-orthogonal array, denoted as
OA,(N;t, k,v). In particular, if A =1, we denote it as
OA(N; t, k, v), which is an optimal covering array. Cover-
ing arrays have attracted attention in recent years due to the
fact that covering arrays have a number of applications in
software testing' >, data compression and intersecting
codes'”, etc. Existing works on covering arrays mainly fo-
cus on covering arrays of strength r =2 or t =3"*"". Howev-
er, there has not been much research on the covering arrays
B Meanwhile, the

construction methods of f-covering arrays are either heuris-

. 10-11 - [89
tic!"™" or mathematic™™'.

for strength of an arbitrary value ¢

The algorithm complexity of

1" and the mathe-

heuristic methods is usually exponentia
matics methods are usually hard and complicated”™ . In this

paper, we present a new algebraic and recursive method for
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constructing covering arrays for strength of an arbitrary val-
ue ¢ based on difference matrices. Our method is simple in
mathematics construction and the complexity of the algo-
rithm is polynomial.

1 Definitions and Recursive Construction Method

Considering an additive group Z_ of orders with elements
denoted by 0, 1, ..., s — 1, we first give some definitions on
difference matrices'™'.

Definition 1  An r x ¢ matrix with entries from Z, is
called a difference matrix if all the elements of Z appear
equally among the entry-wise differences, modulus s, of
any two columns of the matrix. We denote such a matrix by
D(r,c,s).

Lemma 1'*
D(r,c,s),then

If D=(d;),,. is a difference matrix

is an orthogonal array OA(rs; 2, ¢, s), where D, = (dU +
i),.(ie{0,1,...,5s-1}).

Definition2 LetA =(a,),,,and B =(b,),,, be respec-
tively m x n and u x v matrices with entries from an Abelian
group Z, with binary operation * ( * usually denotes addi-
tion or multiplication) . Their Kronecker product, denoted by
AQB, is an mu X nv matrix,

uxv

all *B aln *B
AQB = :

a. . *B ... a *B

ml mn

where a; * B stands for the u x v matrix with entries a; * b,
(1<r<u,1<s<v). In this paper, = always denotes addi-
tion.

Using Definition 2 we may rewrite the array A in Lemma
1 as

6, D
6, *D
A=EQ®D = .

6,_,*D
where E = {5,,6,, -.-
0,1,...,s-1).

Theorem1 If D =(d,),,, is a difference matrix D(r, c,
s) and B = (b;),,, is a covering array CA(N; 2, k, s5),
where d::/’ bU eZ =1{0,1, ..., s —1}(Z, is an additive
group), then the array C = B ® D is a covering array

8, 1 (8. ez, ={0,1,...,s-1},i=
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CA(Nr;2, ke, s).

b, #D b, D
Proof Let C=BQ®D = : , where
le * D ka * D
B =(b;) ., is a covering array CA(N; 2, k, s) and D =
(d;),,.is a difference matrix D(r, ¢, s). In the following
paragraphs, we will prove that the array C is a covering ar-
ray CA(Nr;2, ke, s) .

According to the definition of the Kronecker product, we
know that the array C is an Nr x kc matrix and it is parti-
tioned into Nk blocks subarrays. If B =(b;),,, (b, e Z, =
{0,1,...,s —1}) is a covering array CA(N; 2, k, s), then
each column of the array B includes each element of Z_ at
least once. In other words, since each column of the array
B includes E = {§,,8,,....,8, ,}'(8,€Z,=1{0,1, ....,s =1},
i=0,1,...,5—1), then each column block subarray of the
array C includes an EQD subarray. We know from Lemma
1 that E® D is an orthogonal array. Thus, each column
block subarray of array C includes an orthogonal subarray
with entries from the additive group Z,.

We select any two columns / and m of the array C and
consider the following two cases.

Case 1 Suppose that columns / and m occur in the same
column block subarray of the array C. Since each column
block subarray of the array C includes an orthogonal subar-
ray with entries from the additive group Z_, then two col-
umns / and m will include any pair (x,y),x,yeZ ={0,1,
...,5—1} at least once.

Case 2 Suppose that columns / and m occur in different
i and j column block subarray of the array C, respectively.
We consider two different conditions for this case:

The first is the condition where the columns / and m come
from the same column of the difference matrix D. Since the
array B is a covering array with entries from the additive
group Z, then any pair (x,y),x,yeZ ={0,1,...,s -1}
occurs in the i and j columns of the array B. The columns
of [ and m of the array C include any pair (x +d,;,y +d;) =
(x,y)mod s, (x,y) eZ ={0,1,...,s-1},d,eZ ={0,1,
..., —1}.In other words, the columns / and m of the array
C include any pair (x,y),x,yeZ ={0,1,...,s -1}.

The second is the condition where columns / and m come
from different columns of the difference matrix D. As the
array B is a covering array with entries from the additive
group Z_, the pair (x,y),x,yeZ =1{0,1,...,s -1} occurs
in the i and j columns of the array B. Then the i and j col-
umns of the array B include the same E = {§,,6,, ..., d,_, '
(6,eZ,={0,1,...,s-1},i=0,1, ..., s —1). In this case,
columns / and m come from different columns of the differ-
ence matrix DD, which is similar to Case 1. Then, columns /
and m of the array C include any pair (x,y),x,ye Z, = {0,
1,...,s—1}.

Corollary 1 If D =(d,),,, is a difference matrix D(r,
¢,s) and B =(b;),,, is a covering array CA(N; 2, k, 5),
where d;, b, e Z = {0, 1, ..., s = 1}(Z, is an additive
group), then there is a covering array CA(Nr'; 2, kc’, ) (j
=2).

Proof According to Theorem 1, we know that B&QD is
a covering array CA(Nr;2, ke, s); then (BQD) ®D is still
a covering array CA( Nr*: 2, ke?, s). We do it for j times

iteratively. (BQD) ®...®D is a covering array CA(Nr';
2, k', 5)(j=2).

According to Theorem 1 and Corollary 1, we know that
we can use the algebraic operation “@” to generate arbitrary
parameter factors of 2-covering arrays CA(Nr'; 2, kc', s) (j
=2) from the existing few parameter factors of 2-covering
arrays CA(N;2,k,s) and difference matrix D (r, ¢, ).
Therefore, we can obtain the following recursive algorithm
for extension parameter factors of covering arrays of strength
2.

Algorithm 1

Input: Difference matrix D = D(r, ¢, s) and covering ar-
ray B, =CA(N;2,k, s);

Output: Covering array B, ,, = CA( NP2, ke, s) (j=1).

Forl=1,2,...,j,

B, , =B,®D
End
The implementation complexity of Algorithm 1 is
O(jreNk) . In the following of this paper, we generalize the
recursive method of covering arrays of strength 2 to covering
arrays of strength #(1=2).

Let Z be an Abelian group of order s. By Z', for t=1,
we will denote the Abelian group of order s consisting of all
the 7-tuples of elements from Z with the usual vector addi-
tion as the binary operation. Let Zy = {(x,, ..., x,): X, = ...

1+1

=x, € Z. Then Z; is a subgroup of Z' of order s, and we de-
note its cosets by Zi(i=1,...,s"" —1)!".

Definition 3'"”’  An r x ¢ matrix D based on Z, is a
difference matrix of strength 7 if for every r x ¢ subarray,
each set Z;(i=0,1, ..., s - 1) is represented equally when
the rows subarray are viewed as elements of Z'.

We denote such a matrix D by D,(r, ¢, s). For t =2,
Definition 3 is equivalent to Definition 1.

The following results are generalized from Theorem 1 and
Corollary 1 of t=2. Their proof methods are similar.

Theorem 2 If D =(d;),,, is a difference matrix D, (r,
c,s) of strength ¢, and B = (b;),,, is a covering array
CA(N;t, k,s) of strength ¢, then C = BQD is a covering
array CA(Nr; t, ke, s) of strength ¢.

Corollary 2 If B=(d,),,. is a difference matrix D, (7,
¢, s) of strength 7, and B = (b;),,, is a covering array
CA(N; t, k,s) of strength ¢, then there is a covering array
CA(NV; t, kc', 5) (j=2) of strength ¢.

We also give the recursive algorithm for the extension of
parameter factors of covering arrays of strength #(#=2).

Algorithm 2

Input: Difference matrix D =D (r, ¢, s) and covering ar-
ray B, =CA(N; t, k, s);

Output: Covering array B,,, = CA(NY; t, k', 5) (j=1).

Forl=1,2,...,],

B,,, =B,®D

End

The implementation complexity of Algorithm 2 is also
O(jreNk) .

1+1

2 Examples

In this section, we give two examples to demonstrate our
recursive construction method.
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Example 1 There is a difference matrix D =D(7,7,7),

0 1 4 2 2 4 17
026 5 6 20
03 113 0 6

D=0 4 3 4 0 5 5
05 5 0 4 3 4
06 03 1 1 3

L0 0 2 6 5 6 2-

and a covering array CA(49;2,8,7) e According to The-

orem 1 and Corollary 1, there is a covering array CA(343;

2,56,7) =CA(49;2,8,7) ®D(7,7,7) and a covering array

CA(2 401;2,392,7) =CA(343;2,56,7) ®D(7,7,7), etc.
Example 2 There is a difference matrix D = D, (9, 3,

3),

0 0 07

0 1 1

0 2 2

1 0 1

D=1 1 2

1 20

2 0 2

210
L2 2 14

and a covering array CA(33;3,6,3) ter, According to Theo-
rem 2 and Corollary 2, there is a covering array CA(297; 3,
18,3) =CA(33;3,6,3) ®D,(9,3,3) and a covering array
CA(2 673;3,54,3) =CA(297;3,18,3) ®D,(9,3,3), etc.

3 Conclusion

This paper proposes a new algebraic recursive method for
constructing ¢-covering arrays (t=2) based on the r-differ-
ence matrix (#=2). It can extend parameter factors on the
existing ¢-covering arrays and cover all the combinations of
all parameter factors. The method is simple and easy
to realize. The complexity of the algorithm is polynomial.

t-4E 28 A
8%

What remains a problem is to obtain the ¢-difference matrix.
We can further work on the investigation of the t-difference
matrix in the future.
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