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Abstract: In order to study algebraic structures of parallelizable
sphere s’, the notions of quasimodules and biquasimodule
algebras over Hopf quasigroups, which are not required to be
associative, are introduced. The lack of associativity of
quasimodules is compensated for by conditions involving the
antipode. The twisted smash product for Hopf quasigroups is
constructed using biquasimodule algebras, which is a
generalization of the twisted smash for Hopf algebras. The
twisted smash product and tensor coproduct is turned into a Hopf
quasigroup if and only if the following conditions (h,—a) @h,
=(h,—a) ®h,, (a—S(h,)) ®h, =(a«—S(h,)) ®h, hold. The
obtained results generalize and improve the corresponding results
of the twisted smash product for Hopf algebras.
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t is a well-known fact that the only parallelizable
I spheres are s', s°, s. The first two are groups and it is
known that s is something weaker (a Moufang loop or a Mo-
ufang quasigroup). Recently, Klim and Majid"" introduced
the notions of Hopf quasigroups and Hopf coquasigroups in
order to capture the quasigroup features of the (algebraic)7-
sphere. They observed that the axioms of Hopf (co) quasi-
group unified quasigroups”™ and the Malcev algebras'' just
as Hopf algebras historically unified groups and Lie algebras,
and they also observed that some basic properties analogous
to theorems'' of Hopf algebras can be generalized to Hopf
(co)quasigroups. These are generalizations of Hopf algebras
that are not required to be (co)associative. The lack of (co)
associativity is compensated for by conditions involving the
antipode. In the note, we first introduce the notion of the
twisted smash product for Hopf quasigroups. Then we give a
necessary and sufficient condition making the twisted smash
product and tensor coproduct into a Hopf quasigroup, which
includes some important results in several references.
Now, we first recall the definition of a Hopf quasi-
group'"’.
A Hopf quasigroup is a possibly-nonassociative but unital
algebra H with product u: H® H + H and unit 1: k — H
equipped with algebra homomorphisms A: H— HQH, e: H

Received 2010-09-10.

Biographies: Fang Xiaoli (1979—), male, doctor; Wang Shuanhong ( cor-
responding author), male, doctor, professor, shuanhwang@ seu. edu. cn.
Foundation items: The National Natural Science Foundation of China
(No.10971188), the Natural Science Foundation of Zhejiang Province
(No.Y6110323), Jiangsu Planned Projects for Postdoctoral Research Funds
(No.0902081C), Zhejiang Provincial Education Department Project ( No.
Y200907995), Qiantang Talents Project of Science Technology Department
of Zhejiang Province (No.2011R10051).

Citation: Fang Xiaoli, Wang Shuanhong. Twisted smash product for Hopf
quasigroups[ J]. Journal of Southeast University ( English Edition), 2011, 27
(3):343 —346. [ doi: 10.3969/j. issn. 1003 —7985.2011.03. 023]

— k forming a coassociative coalgebra and a map S: H—H
such that the following conditions hold.

p(id®u) (S®idRid) (ARYid) =e®id =
p(id®u) (1d®SRid) (A®id) @Y

p(u®id) (1d®S®id) (1d®A) =idQe =
pw(p®id) (Id®id®S) (id®A) (2)

We use the Sweedler notation' for coproduct: for all & e
H, A(h) = h, ®h,(summation implicit). Thus, in terms of
the Sweedler notation, the Hopf quasigroup conditions (1)
and (2) can be expressed by

SChy) (hg) = hi(S(hy)g) = (g(hy))S(hy) =
(&3(h))) b, = ge(h)

As for the standard Hopf algebra, map S is called an anti-
pode. It is proved in Ref. [1] that the antipode is antimulti-
plicative and anticomultiplicative and it is immediately
shown that, for all

heH S(h)h, = h,S(h,) = e(h)1

Let H be a Hopf quasigroup. A vector space V is a left H-
quasimodule ' if there is a linear map a: HQ V' V written
as a(h®v) = h—v such that

hy = (8(h,) —v) = e(hv = S(hy) —(h, —v), 1 >v =v
(3)

for all h,ge H,veV.

Similarly, we can define a right H-quasimodule, that is,
there is a linear map B: VQ H > V written as B(v®h) = v«
h such that

(U‘_hl) ‘_S(hz) = (U‘_S(hl)) <_hz =e(h)v, ve—1=v
(4)

for all h, ge H,ve V. If a vector space V is a left H-quasi-
module and a right H-quasimodule, and the following con-
dition holds,

(h—>v) g =h—>(veyg) (5)

where h, g e H,v e V, then we call it an H-biquasimodule.

An algebra A (not necessarily associative) is a left H-
quasimodule algebra if A is a left H-quasimodule and the
following conditions hold,

h—(ab) = (h, —>a)(h,—b), h—1 = g(h)1 (6)

forall he H,a,beA.

Similarly, we give the notion of a right H-quasimodule
algebra, that is A is a right H-quasimodule and the follow-
ing conditions hold,
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(ab) «—h = (a«h)(b<h),1«h=gh1 (7)

forall he H,a,beA.

Let H be a Hopf quasigroup with antipode S, and A is an
algebra ( not necessarily associative). A is called an H-
biquasimodule algebra if the following conditions hold:

1) A is an H-biquasimodule with the left H-quasimodule
structure map “—” and with the right H-quasimodule struc-
ture map “«";

2) A is not only left H-quasimodule algebra with the left
module action “—” but also right H-quasimodule algebra
with the right quasimodule action “«".

A coalgebra C is a left H-quasimodule coalgebra if C is a
left H-quasimodule and

A(h—c¢) =h,—c¢, @h, >¢c,, e(h—c¢c) = e(h)e(c)
(3)

for all he H,ce C. A left H-quasimodule Hopf quasigroup
is a Hopf quasigroup which is a left H-quasimodule algebra
and left H-quasimodule coalgebra. By a similar method, we
can define a right H-quasimodule coalgebra and a right H-
quasimodule Hopf quasigroup.

Theorem 1  Let H be a Hopf quasigroup. Let A be a
left H-biquasimodule Hopf quasigroup and a right H-quasi-
module Hopf quasigroup such that, for all ke H and a € A,

g—(S(h) —a) = (g5(h)) —a (9

(a—S(h)) —g =a—(S(h)g) (10)

Then the twisted product AOH built on A ® H with the
tensor coproduct and unit and

(a®h) (bOh) = a(h, — b« S(h,)) @h,g  (11)

S(a®h) =(1RS,(h))O(S,(a) ®I) (12)

is a Hopf quasigroup if and only if the following conditions
hold,

(hy > a) @ h, = (h, >a) Qh (13)

(a«=S(h)) @h, = (a—S(h,)) ®@h  (14)

Proof ( sufficiency) To see that A is an algebra homo-
morphism, for all a,be A, h,l e H, we compute

A(a ®h)O(b®1)) = ( a(hy —b—5(hy)) @ hyl) =
alhy = b«—S(h3))), @ (h), ® (hy = b«—S5(hy)), ® (hyl),) =
a,(h, —> b« S(hy)), ®h2]l & a,(hy, > b«—S(hy),) Q hyl, =
a,(hy — b, —S(hy),) Q@ hyl, @ ay(hy, — by, «—S(hy),)  hyl, =
a,(hy = b, «—S(hg)) ® hyl;, ® a,(h, —> b, «—S(hs)) ® hyl, =
a,(hy > b, —S(hy))  hyl; @ a,(hy, — by, «—S(hy)) Q hsl, =
a,(hy > b, —S(hy)) @ hyl, @ a,(h, — by, «—S(hg)) Q hsl, =
(@, ®h)Ob, ®l) Q(a, ®h)Ob, VL) =

Ala @ h)A(b ® 1)

The first equality and the second equality above use the
definitions of multiplication and comultiplication of A®H,
respectively. The third equality uses the algebra morphisms
of A, and A,. The fourth equality uses the properties of the
left H-quasimodule algebra and the right H-quasimodule al-

gebra. The fifth equality uses the anticomultiplication of the
antipode. The sixth equality uses the condition (14) two
times. The seventh equality uses the condition (13) two
times. The eighth equality uses the definition of multiplica-
tion of A®H.

It remains to check the Hopf quasigroup conditions (1)
and (2). For all a,be A, h,l e H, we compute

S((a®h)) O((a®h),0(bQI) =

S((a @h),)O(ay(h, > b «—S(hy)) @hl) =

(S(hs) —S(a@) «=S*(hy) @ S(h,)) O(ay(hy —b«S(h)) @ hsl) =
(S(hs) = (S(ay) «=S*(h)))(S(hy) — ((ay(hg —>b «S(hy))) <
S'(h))) & S(hs) (hyD) S(hy) — ((S(a,) <

S (h)) ((ay(hs —b «S(hy))) «S*(hy)) @ S(hs)(hel)) =
S(hs) = ((S(a) (ay(hy —b «=S(he)))) <= (h)) & S(hy) (hsl) =
&(a)S(hy) — ((hy —b <= S(h)) «S'(h;)) ® S(hy) (hsl) =
&(a)(S(hy) — (hy —b «=S(hg))) S’ (h) ® S(hy) (hsl) =

&a) (b« S(hy)) «S*(hy) @ S(hy)(hsl) =

ela)e(h)(b—1) I = gla)e(h)b &1

The first equality, the second equality and the third equal-
ity above use the definitions of multiplication, comultiplica-
tion and the antipode of A®@H. The fourth equality and the
fifth equality use the properties of left quasimodule algebra
and right quasimodule algebra. The sixth and the eighth use
the properties of quasimodule. The seventh equality uses the
property of biquasimodule. This proves that u(id®u) (S®
id®id) (A®id) = £®id. Next,

(a ®h),O(S((a®h),)B(bXI)) =
(a, @hy) O(((S(hy) —S(ay) «S*(hy)) ®S(hs)
(a, ® h)O((S(hg) —S(ay) «—S*(h,))(S(hs) —b S
a(hy — (S(hs) — S(a,) HSz(hz»))(s(/%) —b«S'(hs))

S(hy)) & hy(hgl) = a,(h; — ((S(h;) — S(a,)) (S(hg) — b) «—
§*(hy)) «S(hsy)) @ hy(hsl)
a,(hy — ((S(hs) — S(a,)) (S( )
a,(hy — (S(hy) —(S(ay)b))) ®
e(h)a,(S(ay)b) &1 = &(h)e( )b & !

This proves that e @ id = u(id @ u) (Id® S ®id) (A &®

id).

)Now, we will prove that u(u®id) (1d®S®id) (iIdQA)
=id®e¢. For all a,be A, h,l e H, we have

)0(b®1)) =
(h)) @hyl) =

b)) & hy(hil)) =

((b®@NBO(a®h),)BS((a ®h),) =

((b®N0O(a; ®hy))O(S(hy) — S(ay) «S(h,) ® S(hy)) =
(b(l; —a, «=S(Ly)) & Lh)O(S(hy) — S(a,) < S(h ) S(hs)) =
b(ly — ay <= 58(15)) ((Lhy) — (S(he) —S(a,) «—S(hy)) «—S(Lh) &
(Lho) SChs)) = bl — ay «—S(Ls)) (L) —
((SChe) —S(a,)) «—S(hy)(S(h3)S(L))))) @ (L3hy) S(hs) =
b(ly = ay <= 5(5)) ((Lhy) — ((S(h,) — S(a,)) —S(L))) @1y =
e(h)b(l, —a, «—S(L)) (L, > S(a,) «—S(l)) &1, =
b(l, — (a;S(a,)) «S(L)) &1, =
b(l—1«5(L))  Le(h)e(a) = b & le(h) e(a)

The first equality, the second equality and the third equal-

ity use the definitions of multiplication, comultiplication
and the antipode of A@H. The fourth equality uses the anti-
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multipication of the antipode. The fifth equality uses (10)
and the property of Hopf quasigroup. The sixth equality uses
(9) and the property of Hopf quasigroup. The seventh equali-
ty uses the properties of quasimodule algebra. This proves
that pu(u®id) (Id®SXid) (1d®A) =id®e. Similarly,

(b®DOS((a®h),))O(a®h), =
(b ®DO(S(h;) —S(ay) S (hy) @ S(hy))
b(l, = (S(hs) —S(a,) «S*(hy)) < S(L;) ®
b(l, = (S(hs) —S(ay) «S'(hy)) «S(Is)) (L,
a, S (h)S(L)) ® (1,S(hsy))hg =

b(1,S(hs) — (S(ay) «S*(hy) S(15))) (L, S(hy) —
(ay < S*(hy) S(1,)

b(l,S(hy) —(S(e)
b(LiS(hy) — (S(

(
( )O(a, @ hy) =

e L,S(h,))B(a, ® h,) =
- S(a) Sthy) -

)) @ (L,S(hs))hs =

S (h)S(l))(azHSZ(hz)S(ls))) ® (LS(hs) ) hs =
) a (h )S(55))) @ (LS(hy)) by =

&(a)b(1,S(hy) —1) & (L,S(hy))hy =

b ® (IS(hy))h, b®le( ) &(a)
This proves that id® e = u(u®id) (Id®id®S) (IdXA)

=id®e.
(necessity) Since

a,

A((1®MN O(a®1)) =A(1QM)A(a®1)
we have

(hy > a—S(h)), ®h, ®(hy —a—S(hy)), ®h
(hy = a«3S(hy)) ®h, & (hy = a, < S(he)) @
(15)

Applying £, ®1d®id®id to (15) and using the property
of quasimodule coalgebra, we obtain

hy & (hy —a «=S(hy)) @ hy = hy & (h, —>a«=S(h)) & h,
(16)

Applying (id®«) (id®id®s*)to (16) and using the
property of quasimodule, we obtain (13). Applying id®id
Qe ®id to (15) and using the property of quasimodule
coalgebra and (13), we have

hy—>a<S(h) @h, @hy = h, a5

hy) @ hy & h,
17

i.e.,

hy ® hy >a<«—S(h,) ®h; =h, Qh, >a<+—S(h;) ®h,

(18)

Applying (—®id) (s®id®id) to (18) and using the
property of left quasimodule, we have (14). This completes
the proof.

If the right quasiaction is trivial, then (14) holds. By
Theorem 1, we have the following corollary which is the
main theorem in Ref. [8].

Corollary 1 Let H be a Hopf quasigroup, A is a left H-
quasimodule Hopf quasigroup. Then a smash product Hopf
quasigroup A x H built on A x H with the tensor product
coproduct, counit and unit, and the product and the anti-
pode given (11) and (12) is a Hopf quasigroup if and only
if conditions (13) and (9) hold.

Remark 1 For a smash product, the condition (9) can

be obtained by the proof of Theorem 4. 3 in Ref. [8].

If the right quasiaction is trivial. It is easy to see that the
module structure defined in Ref. [3] is a special case of the
quasimodule in this note and the condition (9) holds by the
definition of the module structure given"'. If H is a cocom-
mutative Hopf quasigroup, it is easy to find that the condi-
tion (13) holds. Thus, we have the following corollary
which is an important result in Ref. [1].

Corollary 2 Let H be a cocommutative Hopf quasigroup
and A a left H-quasimodule Hopf quasigroup. Then a smash
product Hopf quasigroup A x H built on A® H with the ten-
sor product coproduct, counit and unit, and the product and
the antipode given in (11) and (12) is a Hopf quasigroup.

If A and H are both associative, A and H are usual Hopf
algebra. Then Theorem 1 becomes the main result in Ref.
[9].

Corollary 3 Let H be a Hopf algebra, A a left H-mod-
ule bialgebra and a right H-module bialgebra. The twisted
smash product algebra A % H with the tensor coproduct,
where the product and the antipode given in (11) and (12)
is a Hopf algebra if and only if conditions (9) and (10)
hold.

By Corollary 3, we have the following corollary ( see
Theorem 2. 3 in Ref. [10]).

Corollary 4 Let H be a cocommutative Hopf algebra
and A be a Hopf algebra which is an H-module bialgebra.
Then the tensor product coalgebra structure on A # H
equipped with the smash product structure makes A#H into a
Hopf algebra with antipode defined by S(a#h) =S(h,)S(a)
#S(h,) .

Remark 2 By duality, we can also give a necessary and
sufficient condition making the twisted smash coproduct and
tensor product into a Hopf coquasigroup which is introduced
in Ref. [1].
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