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Abstract: Dynamic casual modeling of functional magnetic
resonance imaging(fMRI) signals is employed to explore critical
emotional neurocircuitry under sad stimuli. The intrinsic model
of emotional loops is built on the basis of Papez’s circuit and
related prior knowledge, and then three modulatory connection
models are established. In these models, stimuli are placed at
different points, which represents they affect the neural activities
between brain regions, and these activities are modulated in
different ways. Then, the optimal model is selected by
Bayesian model comparison. From group analysis, patients’
intrinsic and modulatory connections from the anterior cingulate
cortex (ACC) to the right inferior frontal gyrus (rIFG) are
significantly higher than those of the control group. Then the
functional connection parameters of the model are selected as
classifier features. The classification accuracy rate from the
support vector machine( SVM) classifier is 80.73%, which, to
some extent, validates the effectiveness of the regional
connectivity parameters for depression recognition and provides
a new approach for the clinical diagnosis of depression.
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epression constitutes a major mental health burden re-
D cently'''. The diagnosis of depression is based on
clinical symptoms and their rankings according to subjective
diagnostic criteria. fMRI signals provide a possibility to rec-
ognize depression objectively. Nowadays, research interest
has switched from mapping activation sites towards identif-
ying the interconnectivities. Interesting patterns of abnormal
interregional synchronization have now been described in
various brain disorders and mapped for mental disorder diag-
nosis purposes.

Based on the observation data, the dynamic causal model
(DCM) can infer the characteristics of functional connectiv-
ity between brain regions. Using the Bayesian model selec-
tion(BMS) ™™, we can compare different models and select
the optimal one, which may confirm our assumption. Func-
tional connectivity between brain areas represents the syn-
chronization level of the brain areas when responding to ex-
ternal stimuli, which can reflect the brain function status.
Hence, the parameters from DCM analysis can be intro-
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duced for depression recognition purposes.

In this study, we select critical emotional related regions
and build three information loops for DCM analysis. After
the Bayesian model selection, the calculated functional con-
nection parameters between brain regions are used as dis-
criminative features for depression recognition. Then, the
discriminative map is induced and analyzed.

1 Materials and Methods
1.1 Materials

Twelve patients are recruited from in-patient facilities.
Eligibility screening procedures include a structured clinical
interview for the DSM-IV ( SCID), 24-item HDRS and
common clinical laboratory tests. Patients with other psychi-
atric illnesses and a history of electroconvulsive therapy are
excluded. Twelve healthy comparison subjects, matched by
gender, age, education level and no history of any psychiat-
ric disorder, are recruited. The study is approved by the Re-
search Ethics Review Board. Imaging data are acquired
using a GE Signa 1. 5 T MRI scanner. Sad and neutral emo-
tional faces are performed by young students from the Acad-
emy of Art of Southeast University. When scanned, the
subjects are asked to identify whether the stimuli is sad or
not.

1.2 Dynamic causal model

The dynamic causal model takes the brain as a stimulus-
controlled input-output system, on which stimuli work ei-
ther by acting directly on certain brain regions or regulating
strength of function connections among these regions. The
DCM is composed of a bilinear model™ for the neurody-
namics and a Balloon model”™ for the hemodynamics. The
neurodynamics can be described by a multivariate differenti-
al equation as follows:

x=(A+jZ{ujBf)x+Cu (D)
where x is the vector of neuron states and the dot notation
denotes a time derivative. Matrix A represents the strength
of intrinsic connections between regions, matrices B’ repre-
sent the modulatory connections induced by the input u,,
and matrix C specifies which inputs are connected to which
regions.

Given the parameters @ and input u, the measured BOLD
response y is modeled as

y=h(u, 6) +XB +e (2)

where h(u, @) is the predicted BOLD signal; X contains
the effects of no interest such as signal drift; B is the param-
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eter vector; and e represents the Gaussian prediction errors
with mean zero and covariance C..

The parameters of the DCM are estimated by a Bayesian
approach, the prior and likelihood distributions for a given
model m are as follows:

0 =N(0.,C
p(8|m) =N(8,,C,) } 3

p(y 0. m) =N(h(8, u) +XB. C,)
According to the Bayes rule, the posterior distribution is

_p(y 6, mp(o|m
p(8ly. m = p(y [ m)

Taking the logarithm of both sides of the equation above,

log p(0 |y, m) =log p(y | @, m) +log p(@ | m) -
log p(y | m) (4)

The posterior distribution is estimated via the expectation-
maximization (EM) algorithm, where the posterior mean @

and the posterior covariance f are updated in E-step, and
the hyperparameters of noise covariance C, are updated in
M-step. These steps are iterated until the posterior probabili-
ty converges, and we obtain the posterior distribution,

p(0 1y, m) =N(0,;, 3\) (5)

Different models are compared by the model evidence,

p(y|m = [p(y|6. mp(omdo (6

Because this integral is analytically unsolvable, we use the
Laplace approximation and obtain the log-evidence of the
model.

log p(y \ m) = accuracy(m) — complexity(m) =
~Jog | €. | =2y ~h(u, 0,)"C (5 -~ h(w, 0,,)) -
1 T e
2 (O —0,) C, (0, -0,
(7

Based on the model evidence, the optimal model can be se-
lected by the Bayes factors.

1 1
Tiog €, - trog 3, | +

2 Connection Models

The visual stimuli from visual sensory area are received by
the anterior cingulate cortex'”™, which integrates emotional
and cognitive signals. When the integrated signals conflict
with the original emotions and cognitions, the ACC asks for
adjustment by sending signals to other regions, such as the
prefrontal lobe, which in turn sends signals to adjudicate re-
sponse conflicts and refresh active representations. Based on
the prior knowledge above, we extract fMRI signals from
these areas for the connection model study and build the in-
trinsic connection model as shown in Fig. 1, where VI is the
primary visual cortex, the ACC is the anterior cingulate cor-
tex, rIFG is the right inferior frontal gyrus and Hipp is the
hippocampus. In order to test how the executive task modu-
lates connectivity within the proposed network, stimuli are
placed in different positions of the intrinsic model, which

constructs the three modulatory models in Fig. 1.

In each region, the ROI is defined by the sphere centered
at the strongest activated voxel, and with a radius of 3 mm.
The convolved BOLD response under sad stimuli inside each
ROI is analyzed via the PCA. And the first principle com-
ponent is selected as the signal of the dynamic causal model
to calculate connection parameters between brain regions.
Finally, these parameters are taken as characteristics for

classification and identification.
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Fig.1 Connection models with different task-related modulatory

inputs. (a) Intrinsic model; (b) Modulatory model 1; (c) Modulatory
model 2; (d) Modulatory model 3

rIFG
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3 Results
3.1 Model selection

After comparisons between the connection models using
the Bayesian model selection, we find that model 2 is the
most suitable for the observed data. The Bayes factors for
the three models are summarized in Tab. 1. The average
Bayes factor for the comparison between model 2 and model
1 is greater than 7. 83, and that between model 2 and model
3 is greater than 2. 71. It is evident that the stimuli input
mainly modulates the bidirectional connection from the ACC
to the right inferior frontal gyrus.

Tab.1 The Bayes factors for the three models

Model 1 2 3
1 1
2 7.83 1 2.71
3 2.89 1

3.2 Results of classification

Based on the results from Bayesian model comparison,
the intrinsic connectivities from the visual sensory cortex
(BA17, 18) to the ACC, from the ACC to the right inferior
frontal gyrus, from the ACC to the hippocampus, and the
modulatory connectivities from the ACC to the hippocam-
pus, from the ACC to the right frontal gyrus are selected as
classifier characteristics. Using the leave-one-out cross-vali-
dation approach, the accuracy of the support vector machine
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classifier is 80.73% . The SVM weights of connection pa-
rameters are displayed in Fig. 2.

Hippocampus

— [ntrinsic connectivity

Modulation of connectivity

Fig.2 SVM weights of connection parameters between brain re-
gions for depression recognition

4 Conclusion

In this paper, we build three different DCMs according to
different modulatory influences of sad facial expression stim-
uli. The intrinsic connections of the models are specified
with prior knowledge, Papez circuit' and the conflict moni-
toring model'"'”’. By the BMS, the best model is selected,
which indicates that the sad facial expression stimuli mainly
modulate the connection from the ACC to the right inferior
gyrus. From the group analysis, we find that the patients’
intrinsic and modulatory connections from the ACC to the
rIFG are significantly higher than those of the control
group. The ACC, as an important area of integrating emo-
tional and cognitive signals, is hypothesized to monitor the
response conflicts. The frontal cortex is thought to guide re-
sponse selection under conditions of response conflicts. One
explanation for the connectivity abnormality in depression
patients can be that the frontal cortex fails to restrain the in-
terference brought on by the negative stimulus, which gives
rise to a reduced regulation of the ACC and a bias of nega-
tive cognitive processing.

For classification purposes, the intrinsic connectivity and

the modulation of connectivity are selected as the features,
which obtain an accuracy rate of 80.73% with the SVM.
From the feature weights shown in Fig. 2, the intrinsic con-
nectivity and the modulatory connectivity from the ACC to
the rIFG contribute mostly to classification. It demonstrates
that these connectivity parameters are discriminative enough
for clinical diagnosis.
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