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Fast alternating direction method of multipliers
for total-variation-based image restoration
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Abstract: A novel algorithm, i.e. the fast alternating direction
method of multipliers ( ADMM), is applied to solve the
classical total-variation ( TV )-based model for image
reconstruction. First, the TV-based model is reformulated as a
linear equality constrained problem where the objective function
is separable. Then, by introducing the augmented Lagrangian
function, the two variables are alternatively minimized by the
Gauss-Seidel idea. Finally, the dual variable is updated.
Because the approach makes full use of the special structure of
the problem and decomposes the original problem into several
low-dimensional sub-problems, the per iteration computational
complexity of the approach is dominated by two fast Fourier
transforms. Elementary experimental results indicate that the
proposed approach is more stable and efficient compared with
some state-of-the-art algorithms.
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mage restoration and reconstruction from blurry and

noisy observation is known to be ill-posed. As we know
that recovering original image from observation by directly
solving the normal equation is unstable and produces useless
results whenever noise exists. Since the condition number of
related equation is quite large, the solution is highly sensi-
tive to the noise level. To stabilize the recovery, one must
utilize some prior information. Namely, we should add a
regularization term to the data fidelity term.

Traditional regularization techniques include the Tikhonov
regularization'"’, the total variation (TV) regularization”
and the Mumford-Shah regularization”™, etc. The Tik-
honov regularization based model is relatively easy to solve;
however, it tends to make images overly smoothed and
often fails to adequately preserve sharp edges. In contrast,
the TV-based model can successfully preserve image attrib-
utes'™ 77

The key difficulty in the TV-based model is the presence
of the nonsmooth TV term in the objective. By applying
smoothing technique and using the classical gradient meth-
od, the solution can be achieved. However, the speed is
very slow. Another well-known approach is the iterative
shrinkage/thresholding (IST) algorithm "', which applies
the linearized gradient method to the TV model """ by sol-
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ving a series of denoising problems. In order to improve the
speed, many efforts have been made, such as the two-step
IST (TwIST)" and the fast iterative shrinkage-thresholding
algorithm (FISTA) ', Although the FISTA performs bet-
ter than IST and TwIST, it preserves the optimal conver-
gence rate in theory. We note that all these approaches do
not make full use of the special structure of the problem.

Recently, a fast TV deconvolution algorithm called FTVd
has been proposed'. It first transformed the TV-based
model into an equivalent constrained problem with equality
constraints, then it applied the classical quadratic penalty
method to solve the TV-based model. Experimental results
show that the FTVd converges much faster than the algo-
rithms mentioned before'"'. From optimization theory, the
quadratic penalty approach well approximates the original
TV model only when the penalty parameter becomes large,
which results in numerical difficulties.

However, the classical augmented Lagrangian method
(ALM) "™ can be applied to the TV-based model by avoi-
ding the penalty parameter going to infinity. The disadvan-
tage of the ALM is that the exact minimization of the aug-
mented Lagrangian function with respect to two block varia-
bles is always expensive. In this paper, we propose the use
of the alternating direction method of multiplier
(ADMM) "™ for solving the problem, which can be re-
ferred as a splitting form of the ALM. Instead of obtaining
an exact minimization with respect to two block variables at
each iteration, the ADMM minimizes with respect to these
variables separately in one round, then it updates the multi-
plier as the ALM. This approach also makes full use of the
special structure of the problem and avoids the numerical
unstable performance caused by the quadratic penalty ap-
proach.

1 Problem Description and Model

1.1 Problem description

Without loss of generality, we assume that the underlying
image is in grayscale and has a square domain. Let X R"
be an original n x n image, K e R"*"be a blurring (or con-
volution) operator, w e R" be an additive noise, and fe R"
be an observation which satisfies the relationship f = Kx +
w. Our objective is to recover x from f with given K, which
is known as deconvolution or deblurring.

Note that the original image is recovered by solving the
following model,

mxin (preg(x) +ud(x, f) (D

In the objective function, @, (x) enforces certain prior
constraints, @, (x) represents the data fidelity term, and u
is a positive parameter to balance the two terms.
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1.2 TV/L’ model

We consider the image restoration problem from blurry and
Gaussian noise with the TV-based model. In model (1), we
take the discrete form of the TV as regularization, i.e.,

n”

™VG&) = 3, I1Dx |, 2
where for each i, Dx e R’ represents the first-order finite
difference of x at pixel i in both horizontal and vertical di-
rections, the quantity || Dx ||, is the variation of x at pixel
i, and the summation is taken over all pixels, which ex-
plains the name of TV. We note that the 2-norm can be re-
placed by the 1-norm in Eq. (2), which is called anisotropic
discretization. In contrast, the TV is isotropic when the 2-
norm is used. We emphasize that our approach is applicable
for both the isotropic and the anisotropic TV deconvolution
problems. For simplicity, we will only treat the isotropic
case in detail because the treatment for the anisotropic case
is completely analogous.

When the image is corrupted by Gaussian noise, the fidel-
ity term in model (1) is usually taken as | Kx —f | .
Combining TV regularization with this fidelity, we obtain
the widely studied TV/ L* model,

min 3. | Dx ||+ 5 | Ke-f 2 (3)

2 ADMM for TV/L?
2.1 A general framework of ADMM

The basic idea of the ADMM was proposed by Gabay and
Mercier' and it was extensively studied by He et al. "' in
optimization and variational analysis. Consider the follow-
ing problem,

min 6, (u) +6,(Au) 4)

where ,( + ) and 0,( - ) are convex functionals and A is a
continuous linear operator. By introducing an auxiliary vari-
able v, problem (4) can be equivalently transformed to

min{el(u) +0,(v): Au =v} (5)

which decouples the difficulties relative to the functionals
0,( - ) and 9,( - ) from the possible ill-conditioning effects
of the linear operator A. The scheme of the ADMM is to
apply alternating minimization to the augmented Lagrangian
function of (5),

L,(u,v,A) =6,(u) +6,(v) A (Au -v) +§ | Au —v || > (6)

and thus derives the following iterative scheme
u'"' =arg min L, (u, v, A")
k+1

v'" =arg min L,(u"" v, A") (7)
k+1 ZAk —’yB(Auk+l _vk+1)

A
5+l
2

where y e (O, ) and B8 >0 to guarantee the conver-

gence """, In the following, we apply the iterative scheme

(7) to the TV/L’ problem (3).
2.2 Applying ADMM to TV/L’

In order to apply the ADMM to TV/L?, we first trans-
form (3) to an equivalent constrained problem as

minf 3% 1y, | +4 | Ke-f %5y, =D, i=1.20 o’}
(3)

where for each i, y, e R” is an auxiliary vector. For conven-
ience, we lety =(y'"”; y”) e R*, where y'" and y** are
vectors of length n’ satisfying ((y").; (»*),) =y, e R* for

2

i=1,2,...,n". Let I',(x,y, A) be the augmented Lagrang-
ian function of (8) and it is defined as

FA(x’yvA) = Z

(131 -0, =D2 + 5 1y, D 1) +

Ll ke —f)?
Starting from x = x* and A = A*, the ADMM is applied to
(8) and it yields the following iterative scheme,
y =arg min I,(x*,y, A%
x =arg mm I (x,y""" A5
A=At —yﬁ(y“‘ -Dx')
It is easy to show that the minimization of FA(xk, y, A5

with respect to y is equivalent to n’ two-dimensional prob-
lems of the form,

. 1 2 ;
min [y, | +5 1y, = (D + g0 7 isr2w

(9)

According to Ref. [14], the solution of (9) is explicitly
given by the two-dimensional shrinkage,

k L k
o Col 1 g P g
5 :max{ | Dt 45 A, | =50 ;
I D,.x*’+E(A"),. [
i=1,2,...1 (10)

where 0 - (0/0) =0 is assumed. The computational cost of
Eq. (10) is linear with respect to the problem size. When
the 1-norm is used in the definition of TV, y'*'is given by

the simpler one-dimensional shrinkage,

y! =max{ | DX %m,. I —%,O}osgn(D,»xk +é(1tk)i)

. 2
i=1,2,...,n

Lt}

where “ o ” and “sgn” represent the point-wise product and
the signum function, respectively, and all the operations are
implemented component-wise. On the other hand, fixing A
=A"and y = y"*'(recall that y**' is a reordering of y:*'

1,2, ...,n°), the minimization of I', with respect to x is a
least-squares problem and the corresponding normal equa-
tions are

> L=
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where D = (D" ; D®) e R*"*" is the global first-order fi-
nite difference operator. D" and D, which are n’-by-n’
matrices, represent first-order finite difference operators in
horizontal and vertical directions, respectively. As used in

(DTD +%KTK)x :DT(y“‘ -

Eq.(2), D, e R>*" is a two-row matrix formed by stacking
the i-th row of D'” onto that of D'”. We follow the stand-
ard assumption of N(K'K) NN(D'D) =0, where N( - ) re-
presents the null space of a matrix, which ensures the nons-
ingularity of the coefficient matrix in Eq. (11). Under the
periodic boundary conditions for x, both D'D and K'K are
block circulant matrices with circulant blocks ', and thus
are diagonalizable by the two-dimentional discrete fast Fou-
rier transforms (FFT). As a result, Eq. (11) can be exactly
solved by two FFTs (including one inverse FFT), each at a
cost of O(n’log(n)). Finally, we update A by

/\k+l =Ak _')/B(ka _ka+l) (12)

Under certain reasonable technical assumptions, the con-
vergence of the ADMM framework was established in Refs.
[17 —19].

In the following, we present the framework of the
ADMM for solving TV/L? problem (3).

Algorithm 1 ADMM

Input f, K, u >0, B>0 and A°.

Initialize x =f and A = A".

While “not converged”, do

1) Compute y**' according to (10) for given (x*, A").

2) Compute x**' via solving (11).

3) Update A**' via (12).

End do

For simplicity, we terminate Algorithm 1 by relative
change in x in all of our experiments, i.e.,

k+1 k
[+ -t | (13)
max{ || x" || .1}
where £ >0 is a given tolerance.
3 Numerical Simulation

In this section, we present numerical results to compare
the ADMM with the FTVd, which has been mentioned be-

(a)

Fig.1 Blurry and recovered results. (a) Blurry; (b) Recovered result from FTVd

(b)

fore and shown to be highly efficient for solving the TV-
based model. We tested on the image Cameraman (256 x
256). All the codes were written by Matlab 7. 12 (R2011a)
and were run on a ThinkPad notebook with the Intel Core
i5-2140M CPU at 2.3 GHz and 4 GB of memory.

We measured the quality of restoration by the signal-to-
noise ratio (SNR), which is measured in decibels (dB) and

= = 2
defined by SNR (x) = 10log,, /X =¥
| x-x|
original image and X is the mean intensity value of x. In our
experiments, we used u = 0. 05/ std® as recommended in
Ref. [14], where std is the standard deviation of the addi-
tive Gaussian noise w.

Set y =1.618, B =10 in Algorithm 1 and £ =3 x 10’ in
(13). The FTVd is stopped by default setting. Both the al-
gorithms start at the blurry and noisy image.

First, let Cameraman go through the average blurry with
a kernel size of 15 and Gaussian noise with mean zero and
std = 10 . The blurry and noisy images and the restored
ones are presented in Fig. 1. The SNR values of blurry, re-
covered by the FTVd and the ADMM are 7.00, 15.47 and
15.52 dB, respectively. The cost time of the FTVd and the
ADMM are 1.25 and 0. 32 s, respectively. The history of
the SNR and the objective function value with respect to the
iteration number are also illustrated in Fig.2. As observed,
the ADMM obtains images of comparable quality, the same
as the FTVd, with less time. The per iteration computation
of both methods is dominated by two FFTs. Therefore, the
running time consumed by the two algorithms is proportional
to the iteration numbers. From Fig. 2, the ADMM can
reach a reasonable SNR in merely several iterations and de-
crease the objective function rapidly, while the FTVd gener-
ally takes more iterations to reach a similar quality solution.
Furthermore, the ADMM reaches smaller function values
than the FTVd throughout the whole iteration process, see
Fig.2(b).

To verify the robustness of the proposed approach, we
test on different levels of average blur under the same
Gaussian noise. Let the kernel size change at 3 to 31 with
odd values. In Fig. 3, we list the recovered SNR of the two
methods and consumed time at different levels of blurry in
Figs.3(a) and (b), respectively.

From the above comparison results, it is safe to conclude
that the ADMM is more efficient than the FTVd.

where x is the

; (¢) Recovered result from ADMM
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Fig.2 History of SNR and objective function value. (a) SNR from
FTVd and ADMM; (b) Objective function value from FTVd and ADMM
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Fig.3 Comparison results of recovered SNR and cost time with
different kernel sizes. (a) Recovered SNR from FTVd and ADMM; (b)
Consuming time from FTVd and ADMM

4 Conclusion

Based on the classical augmented Lagrangian function and
an alternating minimization framework, we propose the use
of the alternating direction method of multiplier ( ADMM)
for recovering images from blurry and Gaussian noise. Ele-
mentary comparison results indicate that the ADMM is more
stable and efficient and, in particular, faster compared with
the FTVd. And its excellent performance depends on fewer
fine tunings of parameters than the FTVd. The fast conver-
gence of the ADMM is due to the advantage of iterative up-
dates of multipliers instead of increasing penalty parameters
to a large value.
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