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Reconstruction of impact force of mechanical press in time domain
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Abstract: To overcome the difficulty in directly measuring the
impact force of a mechanical press, the inverse theory is
employed to reconstruct the impact force from the corresponding
response data in time domain. The nature of ill-posedness of
impact force reconstruction is explored through singular value
decomposition (SVD) and the Tikhonov regularization is utilized
to deal with the ill-posedness, in which the optimal parameter is
chosen in light of the L-curve criterion and the generalized cross-
validation (GCV). The experimentally measured strain responses
of upper and lower dies of the press are chosen as source data for
impact force reconstruction, and the corresponding numerical
results are compared with the experimental measurements, which
verifies the effectiveness of the reconstruction method.
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he mechanical press has the characteristic of “less/
T non-chip finish” which allows it to produce parts clos-
er to their final shapes to satisfy the requirements of clean
and green manufacture. However, violent vibration and
noise always follow the pressing process due to the impact
force, which will bring about tremendous harm to the preci-
sion and lifetime of parts and the operators. Therefore, ac-
curate measurement and proper control of the impact force
are essential to the reduction of vibration and noise and the
improvement of the performance of the mechanical press.

The conventional approach to measuring the impact force
is to insert a force transducer between the colliding bodies.
This method requires the transducer to be sufficiently small
and soft so that it scarcely influences the colliding. In recent
years, the reconstruction of the impact force has been wide-
ly studied to overcome the shortcoming of the former. The
basic idea is to inversely estimate the impact force from the
measured responses at the chosen points of the structure sub-
jected to impact'". It is thus clear that the reconstruction of
the impact force poses an ill-posed inverse problem, which
complicates the solution process.

A number of researches on impact force inverse recon-
struction have been performed in theory and application.
Chang and Sun"' estimated the transverse impact force on a
composite laminate by solving the least-squares problem via
the conjugate gradient method, the iteration number of
which, however, was not discussed. By the use of the gra-
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dient projection method, Wu et al. "™ performed the numer-

ical reconstruction of the impact force on the laminated plate
and rod and demonstrated that their method could improve
the precision of reconstruction through experiments. And
they also claimed that too many iterations of the gradient
projection method might yield unstable estimates. Liu et
al. P! proposed the enhanced least-squares and total least-
squares methods to identify the dynamic force in frequency
domain in which Morozov’s discrepancy principle was em-
ployed to seek the optimal regularization parameter when
both the transfer function matrix and the response data were
contaminated by errors.

Besides, Jacquelin et al. ' analyzed the nature of decon-
volution for force reconstruction in terms of inverse problem
and concluded that the unsatisfied Picard condition of the
transfer matrix is principally responsible for the ill-posed-
ness, which has been solved through SVD in their work.
Furthermore, Jang et al. "™ employed both Landweber-
Fridman and Tikhonov regularization methods for stabiliza-
tion in reconstructing the impact load, damping and the re-
storing characteristics of nonlinear systems, and they repor-
ted that the stability and robustness of the inverse process
mainly depends on the regularization of the ill-posed equa-
tion. As the time history (or frequency information) of an
impact force cannot be generally obtained from response da-
ta with ill-posedness, Hansen made an in-depth study of the
inverse problem theoretically” ™"

As far as we know, no attempts have been reported to ad-
dress the impact force reconstruction of complex mechanical
equipment by inverse estimation. In our present work, the
inverse theory is applied to reconstruct the impact force of
the mechanical press with a structure of great complexity,
and experiments are implemented to confirm the feasibility
and validity of the inverse method.

1 Theoretical Formulation of Reconstruction

By virtue of dynamics, the response of a system subjected
to an impact force can be considered to be linearly depend-
ent on the impact force when the system is treated to be lin-
early elastic during the impact process. Thus, the response
e(t)at a certain point of the system can be expressed by the
linear convolution of the impact force p(t) and the impulse
response function g(¢) as

L

e() = [ gt =)p(r)dr (1)

where the response can be the displacement, velocity, ac-
celeration or strain which is taken herein, and it is assumed
that g(t) =p(t) =e(t) =0 for  <0. Then, the impact force
p(t) can be reconstructed by the measurement of the re-
sponse data with the knowledge of the impulse response
function.
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To solve the continuity equation (1) numerically by com-
puter, a discrete process should be introduced and the dis-
crete convolution equation necessitates the two fundamental
principles: 1) It should be a proper approximation of the
continuity equation; 2) It should be appropriate for decon-
volution solving. This leads to the system of linear algebraic
equation:

Gp =e (2)

where p and e are the vectors composed of the discrete val-
ues of impact force p(f) and response data e(f), respective-
ly; the coefficient matrix G is composed of the impulse re-
sponse function g(¢) and has the Toeplitz-circulant format as
follows:

g(to) g(tn—l) g(tz) g(t])
g(t)  g(t) g(r)  g(1)
G = : : : : (3)
g(th) g(t,r_%) g(tn) g(tn—])
g(t,) g(1,5) g(r)  g(1)

For the sake of simplification, the size of G is set to n X
n, and the lengths of the vectors p and e are set to n. It is
well known that Eq. (2) is an ill-posed problem and the
conventional least-squares solution cannot avoid giving
worthless results in many situations of reconstruction of the
impact force. Therefore, numerical regularization should be
applied to stabilize the problem and minimize the error. Sin-
gular valued decomposition as a useful numerical tool is
used to expose the essence of the ill-posedness of force re-
construction and the Tikhonov regularization method is em-
ployed to regularize the problem, in which the regularization
parameter is selected in light of the L-curve and GCV crite-
ria.

2 Ill-Posedness and Regularization
2.1 Least-squares solution and ill-posedness analysis

Examining the algebraic equation (2) reveals that the
least-squares method is based on minimization of the residu-
al norm E = H e-Gp ‘ ?; therefore, assuming the first partial
derivative of the residual norm to be zero with respect to p
yields the normal equation:

G'Gp =G'e (4)
Then, the least-squares solution can be obtained as
p=G'e =(G'G)"'G"e (5)

where G* = (G"G) "' G” represents the Moore-Penrose pseu-
do of G.

As ordinary least-squares methods tend to result in solu-
tions poorly approximating actual ones as a result of the ill-
posedness of Eq. (2), the SVD technique widely used as a
serviceable numerical tool for ill-posed problem analysis is
also employed to examine the ill-posedness of the recon-
struction of the impact force.

We arrange the characteristic values of transfer matrix G
in a descending order as A, =A,=...=\,, and the singular
values of G are defined as

n’

o, =+ /A, i=12..n (6)

Then, the SVD of G can be expressed as
G =U3V' = Zuio-,viT (7
i=1
where U=[u, u, u, ] and V=1[v, v, .. ]
are unitary matrices (U' =U ' and V' =V"); u, and v, are
the column vectors of U and V; and 3 is a diagonal matrix

possessing the non-negative diagonal elements ( the singular
values of G) in a non-ascending order:

(9

O-Vl

Two typical features of the ill-posed problem of impact
force reconstruction are commonly found"”: 1) The singu-
lar values o, of transfer matrix G decay gradually to zero
with no particular gap in the spectrum and an increase in the
dimensions of G will increase the number or small singular
values; 2) The left and right singular vectors u, and v, tend
to have more sign changes in their elements as the index i
increases (or ¢; decreases). In terms of the SVD, the

Moore-Penrose pseudo of G can be denoted as Ggy, =
w7

u.v.
VIU' = 2 ——, and the least-squares solution expressed

i=1 ag;

in Eq. (5) can be rewritten as

n

p =G5, e = z V; 9

i=1 O;

which clearly illustrates that if the transfer matrix G has
small singular values ¢; and the corresponding coefficients
|u'e | do not decay to zero as fast as o, the least-squares
solution becomes dominated by the small singular values o,
indicating that any perturbation in response data e will cause
prodigious changes in the reconstructed force. In other
words, the slight error or noise in e will be propagated and
amplified by the small singular values ¢-;,, which makes the
solution unstable. As a consequence, the solution in Eq.
(9) appears nearly random due to many sign changes in the
elements of the right-hand singular vectors v,.

2.2 Regularization

Generally speaking, solving Eq. (2) directly by Eq. (9)
may produce meaningless results on account of the disperse
spectrum of the transfer matrix G. Therefore, regularization
needs to be adopted to stabilize the problem for a feasible
solution. The Tikhonov regularization can yield a stable ap-
proximate solution of Eq. (2) by adding a smoothing norm
H Ip H; and seeking a proper tradeoff between the residual and
smoothing norms, thus transforming the problem into a new
minimum one:

min /., =lle = Gpl[+alIp|; (10)

where H . Hi denotes the Euclidean norm of the matrices; « is
the positive regularization parameter; and I" is the Tikhonov
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matrix which is set as an identity matrix herein. Then we
have the normal regularization equation ;

(G'G +al)p =G"e (11)
And the regularization solution can be obtained as
Pric = Guege = (G'G +al) "'G'e (12)

In the regularization process, the parameter « plays a key
role in determining the quality of reconstruction results, bal-
ancing the norm of the residual H e—-Gp H > and that of the
regularized solution H P Hi If « is chosen as a small value,
the spectrum characteristic of the transfer matrix G will not
be ameliorated and ill-posedness may still exist. On the con-
trary, a large o will achieve a stable solution of the new
problem but a poor approximation of the actual one. Hence,
the optimal regularization parameter should balance both the
norm of the residual and that of the regularized solution for
a fair tradeoff between them. The L-curve and GCV criteria
are robust methods for choosing the optimal regularization
parameter "’ , both being employed in the present study.

The L-curve is to present a log-log plot of the norm regu-
larized solution H )/ Hi vs. the corresponding residual norm
He -Gp H >, in which one can easily obtain the compromise
between the minimizations of these two quantities. The L-
curve indicates that the appropriate regularization parameter
« is located at the corner of the curve and can be obtained
by calculating the maximum curvature. Besides, visually
from the L-curve, one can easily perceive how « affects the
characteristics of the regularized solution.

Generalized cross-validation ( GCV) is based on the idea
that if an arbitrary element e, of the response e is left out,
the corresponding regularized solution should predict the ob-
servation well. The GCV function' is defined as

HGPREG —-e Hi

Wla) = (trace(I — GG ))°®

(13)

where Gope = (G'G + ol) "'G", trace(I — GG},,) =
Y (1 —a,(a)) and a,(a) stand for the diagonal elements
i=1

of GGy;. The optimal « can be determined by minimizing
the function.

3 Reconstruction of Impact Force
3.1 Model description

Studied herein is the VH16 mechanical press for forging
and stamping, as shown in Fig. 1. The primary motion
transmission mechanism is a crank-slider structure which
converts the rotary motion of the crank shaft driven by the
motor into the straight reciprocating motion to generate the
impact force for forging.

Obviously, the impact force has a direct effect on the pre-
cision of parts and is followed by impact vibration and
noise. Therefore, the accurate measurement or estimation of
the impact force is the key to improving the performance
and precision of the mechanical press. In this section, the
inverse theory is applied to the reconstruction of the impact
force under the pile driving condition. The schematic dia-

gram of the test setup is presented in Fig. 2.

-

Fig.1 Physical model of VH16 mechanical press
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Fig.2 Schematic diagram of test setup

Body

Two strain gauges adhering to the upper and lower dies
are assigned for recording the vertical strain responses. For
minimizing the influence of colliding, the piezoelectric force
transducer is fixed between the slide and the upper die for
direct impact force collection. As shown in Fig. 3, the im-
pact force and strain response data, which are transformed
into voltage signals and amplified, are collected by the
multi-channel data acquisition unit and analyzed by a PC.
The sampling time is set to 0. 2 ms for both strain response
and impact force.

YFF7 2636 g
Force transducer Charge amplifier Q£
=t
Q=

o §_ PC
E 9
Strai YE29003|yE3817 Dynamic N 3
train gauges - P =
Bridge | strain indicator 2

Fig.3 Schematic diagram of data collecting
3.2 Numerical experiment

In many cases, the failure to satisfy the Picard condition
may account for the ill-posedness of the impact force recon-
struction in Eq. (2). The Picard condition is met when the
coefficients \ u,Te \ in Eq. (9) decay to zero faster than the
corresponding singular values ¢, in the Picard plot. The
strain response of the lower die is chosen for estimating the
impact force. And the Picard plot shown in Fig. 4 clearly in-
dicates that the singular values ¢; decay to zero more quick-
ly than | u'e | . As a result, the small error or noise in
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strain response data will be propagated and amplified in the
time history of the impact force by the small singular values
o,;. Apparently, it is an ill-posed problem that requires reg-
ularization.
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Fig.4 Picard plot for ill-posedness analysis

To obtain the regularization solution expressed by Eq.
(12), the regularization parameter « needs to be determined
by adopting the L-curve and GCV criteria. As illustrated in
Fig.5, the L-curve consists of the horizontal and vertical
parts separated by a distinct corner, which are sensitive to
the residual norm H e - Gp H > and the regularized solution
norm H )4 Hi It is evident that an overestimate of « is likely
to generate a stable solution with a regularization error that
is too large, while an underestimate of « can hardly improve
the spectrum characteristics leaving the instability unsettled.
Therefore, by seeking the point with maximum curvature,
the curve corner is selected to balance the norms of residual
and regularized solutions. The plot of the GCV function is
demonstrated in Fig. 6, which is used for determining the
optimal regularization parameter « by searching for the min-
imum value of the curve.
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Fig.6 GCV function for regularization parameter

The optimal regularization parameters chosen for Tik-
honov regularization are 7.351 4 x 107> ( L-curve) and
5.726 4 x 10 ° (GCV). Using these optimal parameters,
stable results reconstructed from the measured strain re-
sponse are obtained and compared as well with the directly
measured impact force, as illustrated in Fig. 7.
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Fig.7 Results of impact force reconstruction

As indicated in Fig. 7, the reconstructed results basically
match with the directly measured force, which confirms the
validity of applying the inverse theory to the impact force
estimation of the mechanical press. It is also clearly illustra-
ted that the estimated solution using the parameter deter-
mined by the L-curve has a smoother appearance but with a
larger error in the peak value, while the GCV approach
yields a regularization parameter that makes a solution more
approximate to the experimentally measured force.

5% random noise, as an inevitable error and noise in ex-
periments and reality, is added to the strain response data to
analyze the influence on the reconstruction process. The
Picard plot for the problem with noise, given in Fig. 8, dis-
plays a remarkable phenomenon that the singular values o,
have a much faster rate of decay than the coefficients

|u'e | with respect to the plot in Fig. 4 without noise.
Consequently, the corresponding ratio | u)e | /o, tends to
increase notably, by which the noise in the strain response
data will be wildly amplified and propagated to the recon-
structed impact force. It is thus clear that the noise in the re-
sponse data intensifies the ill-posedness of impact force re-
construction.
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Fig.8 Picard plot with 5% noise

The optimum regularization parameter is set to 1. 726 4 x
10~* via the GCV method in view of the fact that the Tik-
honov regularization functions well in deriving a stable solu-
tion from the noise response in Fig. 9. It is obvious that noise
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Fig.9 Results of impact force reconstruction with 5% noise

can bring a more oscillatory feature to the reconstructed re-
sult. Under the noise condition, the numerical regularization
can still help to obtain a stable solution but with little contri-
bution to the reconstruction precision.

4 Conclusion

The inverse theory is successfully applied in the mechani-
cal press to reconstruct the impact force from the strain re-
sponse, and the validity of the approach is confirmed by our
experiment. To overcome the ill-posedness exposed by the
SVD approach, numerical regularization is adopted, where-
by the optimal regularization parameter is determined by L-
curve criterion and the GCV method. The reconstructed re-
sult related to the L-curve appears a bit smoother but with a
poorer approximate precision of the peak value of the impact
force than that obtained by the GCV method. Furthermore,
the influence of contaminated response data on the recon-
struction is examined by artificially adding 5% noise to the
strain response. Though the proposed method has yielded a
stable solution to the problem, it contributes little to the re-
construction precision. And this makes our future research
focus on modifying the numerical regularization method for
optimal impact force reconstruction with higher precision.
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