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Monotonicity of the tail dependence for multivariate ¢-copula
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Abstract: This paper considers the upper orthant and extremal
tail dependence indices for multivariate z-copula. Where, the
multivariate ¢-copula is defined under a correlation structure.
The explicit representations of the tail dependence parameters
are deduced since the copula of continuous variables is invariant
under strictly increasing transformation about the random
variables, which are more simple than those obtained in
previous research. Then, the local monotonicity of these indices
about the correlation coefficient is discussed, and it is concluded
that the upper extremal dependence index increases with the
correlation coefficient, but the monotonicity of the upper orthant
tail dependence index is complex. Some simulations are
performed by the Monte Carlo method to verify the obtained
results, which are found to be satisfactory. Meanwhile, it is
concluded that the obtained conclusions can be extended to any
distribution family in which the generating random variable has
a regularly varying distribution.

Key words: multivariate #-copula; copula;
distribution;  monotonicity;  regularly varying
correlation coefficient

doi: 10.3969/j. issn. 1003 —7985.2011. 04. 024

inverse gamma
function;

uring the last decade, dependencies between financial
D asset returns have increased due to globalization
effects and relaxed market regulation. Tail dependence is
described via the so-called tail dependence indices intro-
duced by Joe'", and it is suitable for a proper understanding
of dependencies in financial markets"””' .

Many researchers use various multivariate distributions
with heavy tails to describe the extremal or tail depend-
ence” ™. And in particular, the multivariate ¢-distribution
and its copula!”’ are frequently used in the context of model-
ling multivariate financial return data'™. We say an n-di-
mensional random vector X follows a multivariate ¢-distribu-
tion with parameters w,,,,%,,, > 0 and » >0, denoted by

X ~t,(m, Y, v), if it has the stochastic representation[gl
X=p +/RZ (D

where Z ~ N(0, ) is independent of R ~IG(v/2,v/2); u
is the mean vector of X.

Using the copula method, Li''" derived explicit expres-
sions of the upper and lower orthant tail dependence for the
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Marshall-Olkin distribution and the multivariate Pareto dis-
tribution. Chan et al. """ derived the formula of tail depend-
ence indices of multivariate z-distribution under Eq. (1),
and discussed the monotonicity of these indices with respect
to o, the element of the covariance matrix 3.

Here, suppose 3 = (o), A =diag(o,,, 0y, ..., 0,,),
then 3 =A"’pA"”?. Therefore, p is the correlation matrix of
Z. Correspondingly, Eq. (1) becomes

X=p +/RAZ (2)

which is denoted by X ~ ¢, (u,p, v). In the following, we
will discuss the tail dependence indices of ¢, (u, p, ) and
the properties of the dependence indices with respect to the
correlation coefficient.

1 Tail Dependence and Regular Variation

According to Ref. [2], tail dependence plays an impor-
tant role in extremal value theory, finance and insurance
models. The tail dependence of a bivariate distribution has
been discussed extensively in the statistics literature'"®. The
general case for multivariate distributions is mostly related to
their bivariate marginal distributions' """

Definition 1 Let X = {X,, X,, ..., X,}" be a random
vector with continuous marginal F, F,, ..., F, and copula
C.

1) X is said to be upper-orthant tail dependent if for some
nonempty set JC {1,2, ..., n}, the following limit exists and
is positive.

7, =imPr{F (X)) >u, VjgJ|F(X)>u, Yiel}
u—1" ‘
(3)

If for all nonempty sets JC {1,2, ...,n}, 7, =0, then we
say X is upper-orthant tail independent.

2) X is said to be upper extremal dependent if the follow-
ing limit exists and is positive.

y=lim Pr{F,(X)) >u. ¥je {1.2,....n} [ F(X)) >u.
die{l,2,...,n}} (4)

If v =0, then we say X is upper extremal independent.

Remark 1 The tail dependence describes the conditional
probability of joint exceedance over a large threshold when
some components already exceed that threshold.

Remark 2 Similarly, one may define the lower tail de-
pendence coefficient.

Remark 3  For any nonempty subset JC {1,2, ..., n}
and any random vector, we can obtain 7, =1y immediately
from the definition. This means that the lower bound of the
upper-orthant tail dependence is the extremal dependence in-
dex.
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Lemma 1"" Let R be the inverse gamma distribution
R ~1G(v/2,v/2). Then its survival function G(r) = L(r)/
7%, and it is regularly varying with index v/2, where L(r)

is a slowly varying function.
2 Tail Dependence for Multivariate ¢-Copula

In this section, we investigate the tail dependence indi-
ces for #,(u, p, v) under Eq. (2). Since the upper tail de-
pendence only depends on the tail behavior of the random
variables, we only need to focus on ¢,(0, p, v). From Eq.
(2), X=VRA"’Y, soA"’X=/RY. Note that A~"°X =
{0,7X,,0,7X,,...,0.”7 X,} is a separable, strictly
increasing transform of {X,, X,, ..., X, }T, so these two
random vectors have exactly the same copula and thus the
same tail dependence indices!”. On the other hand, for
any 1<i<n, o, -l X, has the same distribution, say H, so
we have

7, =lim Pr{F (X)) >u, VJ¢J\F(X)>u Viel)=

u—1

limPr{H( o, X)) >u,Viel) =
u—l1"

lim Pr{o,; ‘”X >t, ngj\o— X >t Viel}=
lim Pr{/RY, >1, Vjg¢J| JRY, >, Viel} =

Pr{R>(t/Y)*, Vje{l,2,...,n}}

lim SRR (5)
e Pr{R>(t/Y)", VielJ}

where ¥, =Y,V 0, and xV y is the maximum of x and y.
Similarly, from Eq. (4) we obtain
Pr{R>(t/Y) Vjel{l,2,...,n}}

y:LwPr{R>(t/Y) Jie{l,2,....n}) (6)

Let ¢(y, p) and @(y, p) be the density and the cumula-
tive distribution of the multivariate normal distribution
N,(0,p), respectively. Then we can obtain the expressions
of the tail dependence indices in the following theorem.

Theorem 1 Let X be a multivariate ¢-distribution
t,(0,p,v) as that in Eq. (2), then

1) For any nonempty set J C {1, 2, ..., n}, the upper-
orthant tail dependence indices are given by

i 7
% (7

v=”‘7 (8)

Proof For R ~1G(v/2,v/2), according to Lemma 1,
Pr{R > 12/(/_/2\1 )%} =G ’2/(,-/:\ Y)?) =
L( ﬁ/(j/:\] Yj.)z)(j/:\1 )/t
where L(+) is a bounded function over (0, o ). Further-

more, following the dominated convergence theorem, from
Egs. (3) and (5), we have

PriR > Vt/Y}

j=

lim
ZTPr{R > VY

Pr{R>t//\Y}
=1lim
HwPr{R>t//\Y}

T, =

[ PR > 7/ )Yy p)

lim - =
o Pr{R > 1/ -/\, v }dd(y, p)

¥, >0, ... ,y,>0 te

| L2/ N )N y) ddb(y, p)
lim ¥, >0, ... ,y,>0 Jj=1 j=1 —
T L N ) ANy p)

| (A y)"dd(y,p)  E(A Y)”
hm ¥, >0,... ,y,>0 J= _ j=1 J

a f 0, y o(i/s\J y,)”ddi(y,p) E(:/g\./ Yi)

Similarly, from Egs. (4) and (6), we have Eq. (8).
From the expressions of the tail dependence indices of the
multivariate 7-copula given in Egs. (7) and (8), we can see

that they are more concise than those obtained by Chan et
al''l,

3 Monotonicity of the Multivariate ¢-Copula’s Tail
Dependence Indices

In this section, we consider the monotonicity of the tail
dependence indices about the multivariate z-copula. We dis-
cuss the local monotonicity proposition of 7, and y about the
correlation coefficient. First, we introduce two lemmas'"" .

Lemma2 Let {Y, Y, ...V, } and {Y,,Y,,....,Y,}" be
normally distributed with distributions N,(0, p) and N, (0,
p), respectively. p >p entry-wise, then for any f,,¢,, ..., ¢

e R,

n

Pr{Y, =t,, ..., Y, =t} =Pr{Y, =1,
Pr{Y <t,,....Y,<t,}=Pr{Y, <t

YH
Y,

.. =t,}
.. <t,}
For nonempty set JC {1, 2, ...,n},let ¥, =(Y,,jeJ),
then Y, ~ N, (0, p,) with the density function ¢,(y,,p,).
K=p'= (k;), and K, =p, = (kfj). Then the following
lemma( Plackett’s Lemma) ' is determined.
Lemma 3 For any i#je J,

by, p) _3d(yp) _
apij - By,ay, - k,,d’(y, p)
and
9, (y,,p,) az¢1(y1’p/)

= = ~k; &,(y,.p)
ap, 37,9y, i 0 (¥,.p,

Theorem 2 Let X ~¢,(0,p,v) with the stochastic repre-
sentation as Eq. (2). Then the upper extremal dependence
index vy increases monotonically in p,;.

Proof For conciseness, let

=E(A\Y)'. B,=E(\Y)", C,=E(V Y)"
j= ie 7=

Then

v=¢ (9)

v

A, A
T =g

and
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A :f Pr{(‘/n\] Yj)">z}dt:j Pr{Y, >, ... Y, > Wt
J= 0

v
0

C = f (1-Pr{Y,<f”, .. Y <{"}dt
0

According to Lemma 2, A, increases monotonically in
p;» and C, decreases monotonically in p,;. These lead to y =
A,/ C, increasing monotonically in p,.

Theorem 3 Under the same assumptions as in Theorem
2, we have

1) If igJ orjeJ, then 7, increases monotonically in p,.

2) If i,jeJ and i#j, then 7, decreases monotonically in
p; if and only if k, > k.

Proof 1) Forig¢J or je¢J, similar to Theorem 2, we
have B, = f Pr{,@,( Y. > ') }dt, which means that B, is

0
invariant when P increases. On the other hand, we already

know that A increases monotonically in p,;. So 7, increases
monotonically in p,.
2) Fori,jeJ and i#j, from Eq. (9), we have

oB,
" opy

0A,
" opy

ap; ;5

v

i 1

and

A, =f (A y)'dd(y, p)
¥,>0, ... ,y,>0 J=1

Using Lemma 3,

94, ‘f (Ay)’ a@fay’..e)dy _

ap ij

¥, >0, ...

[ A (—kdrp)dy ==ka,

L3,>0 J=1 ij

v

o . aB J .
Similarly, = —k,-,- B,. So, we obtain
i

or; 1 ;
—=—(B,(-k;A) -A(-k;B)) =
o, Bi( (—kA) —A,(-k;B,))
( -k, +k)A,B,
BZ

v

Furthermore, we obtain

ot
<0 -k, +k, <0k, >k,
apij ij ij ij ij
The proof is completed.

These two theorems show the local monotonicity proposi-
tions of the tail dependence indices 7, and y about the corre-

lation coefficient of the normal distribution.
4 Numerical Simulations

In Section 2, we obtained formulae of the tail dependence
indices for the multivariate f-copula under Eq. (2). Then in
Section 3 we discussed the monotonicity of the two indices
about the correlation coefficient. Now, we illustrate these
monotonicities by some Monte Carlo simulation examples.
Let yV,y?, ...,y be a sample generated from the multi-
variate normal distribution N, (0, p). Then the tail depend-

ence indices of #,(0,p,v) can be estimated by

M-

CA 1y D™ > 00ry™ <0}

>
|
n

(10)

3

(A 1y Dy >0o0ry® <0y

(A Ly Dy > 00ry® <0}

k=1 /=

n (11)
(.Vl ‘y;k) ‘)Vl{y(k) >0 or y(k) <0}

k=1

<>
Il

Here we select a 3-dimensional ¢-distribution to estimate
7, and y. For each correlation matrix, we generate 8 x 10°*
pseudorandom vectors from the corresponding normal distri-
bution, and then use Egs. (10) and (11) to estimate the tail
dependence indices for different ». We do the following two
simulations.

1) The estimation of 7, and y

1 0 0.5

We suppose the correlation matrix p = [ 0 1 0. 8],

0.5 0.8 1

and select J = {2}and J = {1, 2}, respectively. The corre-
sponding tail dependence indices are denoted by 7, and 7,.
The simulated values of 7,, 7, and y about different v are
plotted in Fig. 1, which show that 7, and 7, are bounded by
v. And we can see that 7, and y decrease and approach 0
quickly as v increases to infinity, which are the tail depend-
ence indices for multivariate normal-copula.

Probability

1
0 5 10 15 20 25
Degree of freedom »

(a)

Probability

0 5 10 15 20 25
Degree of freedom »
(b)

Fig.1 Estimation of 7, and -y under the correlation matrix p.
(a) For 7, and y; (b) For 7, and y

2) The monotonicity of the tail dependence indices
We set the correlation matrices,
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1 0

0.5 1 0.5 0.5
pl=[0 1 0.8], p2=[0.5 1 0.8]
0.5 0.8 1 0.5 0.8 1

Here p,, increases from 0 in p, to 0.5 in p,, and others
are the same.

We first select J={1,2} and let i =1, j =2. Obviously,
i,jeJ but i#j. Further computing the inverse matrices K
and K,, we obtain k,, =3.636 4, k/, =0, so k,, >k],. From
2) of Theorem 3, 7,, should decrease locally in p,,. This is
verified by Fig.2(a).

Then we select i =2, j=3, soje¢J, 7, should decrease
locally in p,, according to 1) of Theorem 3. The simulated
values are demonstrated in Fig. 2(b), which are consistent
with Theorem 3.

1.0

0.8

e
o

e
N

Probability

0.2

1 1 1 1 I

0 5 10 15 20 25
Degree of freedom p
(a)

0.8

e
o

@
I

Probability

0.2

1 1
0 5 10 15 20 25
Degree of freedom »
(b)
Fig.2 Monotonicity of the tail dependence indices for p, and p,.
(a) About 7,,; (b) About 7,5

5 Conclusion

In this paper, we consider the properties of the tail de-
pendence indices introduced by Joe'" for the multivariate -
copula, where the multivariate ¢-distribution is represented
as the relative structure as Eq. (2). It is known that the cop-
ula of continuous variables is invariant under a strictly in-
creasing transformation of the random variables'”. Follow-
ing this proposition, we first derive the formulae of tail de-
pendence indices of the multivariate 7-copula based on these
representations. Then we present the monotonic properties
of the indices about the correlation coefficient. The results
we obtain here are similar to the Proposition 3.3 in Ref.
[11], but our results have a much more clear-cut statistical
meaning. In the proof of Theorem 1, we only use the regu-
larly varying quality of the distribution function of the ran-

dom variable R. Furthermore, the monotonic properties
about the correlation coefficient presented in Theorem 1 and
Theorem 2 have no relationship with the distribution of ran-
dom variable R. Therefore, the results obtained here can be
extended to any distribution family in which the random var-
iable R has a regularly varying distribution.

All the conclusions are verified by the simulation exam-
ples. According to the representation of the tail dependence
indices in Egs. (7) and (8), there perhaps exists some rela-
tionship between the indices and the regular variation index
of the survival function with an inverse gamma distribution.
And according to the simulations, we infer that the tail de-
pendence indices decrease with the regular variation index.
We will discuss the correctness of this conjecture in the fol-
lowing work in detail.
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% T t-copula 1k Y B 1%
BEFHT HkeE!

(" ABRFHF R, BT 211189)
(P RIS KR ERE, R 210003)

WE: % JET % t-copula 8§ L& R FRABK IS B An L EMALABIRAGHK, % r-copula % EABRE M T E 89, § T
%A A EAE Z6) copula B K T R LIRS IE TR LA RT R, it F T % T r-copula 49 B ABIR 35
e R A X, IFR LR\ ZRAAE LKL B E e E. ARG, T X2 MaRIgH X THX 24
a4 By 3R R E RAMRABEARIR IR ALK TAE K 5 BOE A S 9R 14 38 09 42 LR F FRABIR 25 R 09 2R M b A 7 4¢.
B R T T AMBAB I T 45 R e B . R A, K ILPT A 49 T AR S B A R ALK B2 BN K ALY 5 A
.

X$2i7: % 7T r-copula;copula; i fhoFh oA s SR B ) 3 AL A A8 & RS

RESES:0212.4



