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Abstract: Taking variability and uncertainty involved in
performance prediction into account, in order to make the
prediction reliable and meaningful, a distribution-based
method is developed to predict future PSI. This method,
which is based on the AASHTO pavement performance
model, treats predictor variables as random variables with
certain probability distributions and obtains the distribution of
future PSI through the method of Monte-Carlo simulation. A
computer program PERFORM using Monte Carlo simulation is
developed to
Simulation results based on pavement and traffic parameters
show that traffic, surface layer material property, and initial
pavement performance are the most significant factors affecting
pavement performance. Once the distribution of future PSI is

implement the numerical computation.

determined, statistics such as the mean and the variance of
future PSI are readily available.
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ince the late 1990s, the key role of state transporta-
S tion agencies has been shifted from the construction
of new transportation facilities to the operations and man-
agement of existing transportation infrastructure sys-
tems' ™. Recent National Highway User Surveys conduc-
ted by the National Quality Initiative Steering Committee
indicated that the public rate pavement smoothness is the
most important factor of user satisfaction on highway
transportation system performance'*”’ .

The present serviceability index (PSI), a 0-5 scale in-
dicator originally developed by Carey and Irick during
AASHO road test' has been widely used for years as a
highway smoothness measure in pavement design and
management'""""' . Performance modeling and prediction
in terms of smoothness has become a crucial subject in
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transportation asset management because smoothness is
not only the number one factor affecting public rating,
but also the primary contributing factor to a number of
problems'""". For instance, rougher pavement surfaces
can increase vehicle operation costs due to more fuel con-
sumption and mechanical damage, and can increase pave-
ment damage due to dynamic loads'™.

Tremendous efforts have been made for pavement per-
formance modeling and prediction under uncertain-
ty!" % The most widely used method is statistical
regression analysis. Typically one first collects enough
pavement related data (e. g., traffic, pavement structural
information, material properties, environmental effects,
and climate conditions) from a municipal or state pave-
ment system. Statistical regression analysis is performed
which relates pavement performance to a number of pre-
dictor variables. The developed regression model can then
be used for performance prediction. Many performance
models have been developed over the years. Most per-
formance models suffer the limitation of being only appli-
cable to local conditions because these models are devel-
oped based on locally collected data.

A good exception to the performance model is the
pavement design equation specified in the American Asso-
ciation of State Highway and Transportation Officials
Pavement Design Guide''. Using the same technique
( statistical regression), pavement design equation was
developed using AASHO road test data, which has high
data quality and integrity. More importantly, AASHTO
(1993) pavement design equation has been used for pave-
ment design by many states and countries all over the
world. Its reliability has been examined in practice for
decades.

The AASHTO (1993) pavement design equation is
used as a basis for pavement performance modeling and
prediction in this paper. A challenge in pavement per-
formance prediction is to characterize variability and un-
certainty associated with pavement performance. Be-
cause a great amount of variability and uncertainty are
involved in performance prediction, it is very important
that variability and uncertainty receive necessary treat-
ment so as to make the prediction reliable and meaning-
ful. In this study, we develop a distribution-based meth-
od for PSI modeling and prediction using Monte Carlo
simulation.
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1 Pavement Performance Prediction Model

According to AASHTO (1993), the flexible pavement
design equation is

logV,;(t) = 9.36log(Ng +1) —8.27 +2.32logM, +

1094 1", PSI, - PSI

[0.40 f O 1)“9] R
(1)
Ny = a,D, + a,D,m, + a;D;m, (2)

where N (t) is the cumulative number of equivalent sin-
gle axle load (ESAL); M, is the effective roadbed soil
resilient modulus; PSI is the initial PSI, and PSI, is the
PSI at time ¢ after carrying N,;(¢) cumulative ESAL; m,
and m, are drainage coefficients for base and subbase lay-
ers, respectively; a,(i=1,2,3) are the layer coefficients
representative of surface, base, and subbase courses, re-
spectively; and D;(i =1, 2,3) is the actual (in inches)
thickness of each layer; Ny is the pavement structure
number, which reflects the structural capacity to carry
traffic loads and can be calculated from Eq. (2) in terms
of pavement thickness and material property'” " .

Eq. (1) is established based on the AASHO road test
data for highway pavement design purposes'™ . It is essen-
tially an empirical model developed using statistical re-
gression analysis. According to the regression theory, the
dependent variable (the left-hand side of Eq. (1)) is the
mean cumulative ESAL. If Eq. (1) is to be used for pre-
dicting the cumulative ESAL, a normally distributed ad-
ditive error term ¢ ~ N (O, o-i) should be added to the
right-hand side of Eq. (1),
nipulation, pavement performance PSI at time 7 can be
expressed as a function of predictor variables,

After mathematical ma-

8.27-¢ (0.4+1094/(N+1)*")
PSI, = PSI, - 2. 7[%]
My (Ng +1)™

(3)

where £ ~ N (0, 0.35%) can be found from AASHTO
(1993). The interpretation of Eq. (3) is that if the values
of predictor variables PSI;,, M., Ng and N(?) are avail-
able, PSI at time ¢ can be predicted accordingly.

2 Uncertainty in Performance Modeling and
Prediction

If each predictor variable in the right-hand side of Eq.
(3) is deterministic and known with certainty, the predic-
tion of PSI, becomes a matter of straightforward substitu-
tion and computation using Eq. (3). In reality, however,
a great deal of uncertainty is involved in pavement per-
formance modeling and prediction. Basically, there are
six different sources of uncertainty:

1) Missing or nonobservable contributing factors.

Pavement performance model (3) is derived from regres-
sion model (1). It is not uncommon in regression analy-
sis that only part of the predictor ( explanatory) variables
are included in the regression model. In other words,
pavement performance may also be affected by other fac-
tors, of which the modeler is not fully aware, and there-
fore these contributing factors are not included in the per-
formance model.

2) Functional misspecification. The performance model
is only a data-driven empirical model. The function form
in (1) is not known with certainty. The modeler must as-
sume a functional relationship, for instance, a linear rela-
tionship.

3) Variability associated with the pavement material
and the structural properties.
structural properties are rarely deterministic constants as
designed. Due to the very nature of highway spatial dis-

Pavement material and

tribution, there is always variability associated with thick-
ness, modulus, and other variables as reflected in the
right-hand side of Eq. (3).

4) Finite sampling. Because samples can be taken from
only a finite number of locations along a highway with re-
gard to the measurement of the pavement material and the
structural properties, such finite samples may not well re-
present the pavement material and the structural properties
of the whole highway system.

5) Measurement error. There are always measurement
errors embedded in the measurement of each of the pre-
dictor variables. The magnitude and distribution of the
measurement error depend upon the equipment accuracy.

6) Unforeseen future. According to Eq. (3), cumula-
tive traffic is a contributing factor affecting future pave-
ment performance. To predict pavement performance
using Eq. (3), future traffic must be provided as a known
factor, which itself, however, has to be forecasted first.
Due to the inability to foresee the future, it is impossible
to precisely forecast future traffic.

Among these sources of uncertainty, 1) and 2) are re-
lated to function fitting. Although uncertainty will never
be eliminated, it can be reduced if careful statistical anal-
ysis and data mining techniques are applied. Good con-
struction quality control can reduce the uncertainty intro-
duced in 3) to some degree, but will never eliminate it.
Increasing sampling frequency can reduce the uncertainty
in 4), while more accurate measuring devices can reduce
the uncertainty in 5). For the uncertainty in 6), long-
term recording of traffic history can help to make more
reliable traffic forecasts.

To predict future PSI,, it is of paramount importance
that uncertainty resulting from various sources is taken in-
to account properly. We propose a distribution-based
method to fulfill the task of performance prediction. The
basic idea of this method is to treat all independent varia-
bles in Eq. (3) as random variables, and to predict the
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distribution of dependent variable PSI,. In this paper, it is
assumed that the measurement of predictor variables is ac-
curate, i. e., no uncertainty concerning measurement.
Uncertainty except in 2) in the list is considered here.
The error term ¢ in Eq. (3) accounts for the model uncer-
tainty. Since the pavement material and the structural
properties are treated as random variables, their distribu-
tions need to be estimated from field samples. Similarly,
cumulative traffic at future time ¢ is also treated as a ran-
dom variable with a certain distribution, which, clearly,
is a function of time.

3 Distribution-Based Sensitivity Analysis Using
Simulation

In traditional sensitivity analysis one variable at a time
is allowed to vary within a specified range™ . It is the
bounds of the range rather than the distribution of the
changeable variables within the range that are important.
We develop a distribution-based sensitivity analysis in this
study. Similar to traditional sensitivity analysis, only one
factor at a time is allowed to vary and all other remaining
factors stay unchanged; however, instead of specifying
bounds for each random variable, probability distributions
and associated parameters are specified. In other words,
for each predictor variable, a specified number of random
values are first generated in accordance with the pre-de-
fined distribution. These random values are then substitu-
ted into performance prediction equation (3) to calculate
future performance. Distribution-based sensitivity analysis
allows one to observe the variation of predicted perform-
ance at time 7 with respect to a single variable, and there-
fore help the understanding of the influence of different
contributing factors to future pavement performance.

Under this framework of the distribution-based meth-
od, the problem of performance prediction becomes an
estimation of the probability distribution of PSI, as a func-
tion of random variables. In theory, the expression of the
distribution of PSI, can be obtained analytically, but the
implementation is cumbersome because it requires numer-
ical evaluation of multidimensional integration. Monte
Carlo simulation is utilized in this study for the imple-
mentation of performance prediction. The key steps in-
volved in implementation performance prediction using
Monte Carlo simulation include 1) random number gener-
ation, 2) random variable generation, 3) computing the
predicted performance using Eq. (3), and 4) statistical
analyses of simulated performance.

The basic ingredient needed for every method of gener-
ating random variables from any probability distribution
or stochastic process is a source of identically and inde-
pendently distributed (iid) uniform U(0, 1) random vari-
ables. For this reason, it is essential that a statistically re-
liable U(0, 1) random number generator be available. In
this study, a linear congruential generator (LCG) intro-

duced by Ref. [25] is used for this purpose. A sequence

of integers Z,, Z,, --- is defined by the recursive formula

Z.=(aZ,_, +c) modm (4)

i

where m is the modulus; a is the multiplier; c is the in-
crement; and Z, is the seed. They are all nonnegative in-
tegers. According to Eq. (4), it is clear that 0<Z,<m
—1 and the desired uniformly distributed random number
U, =Z,/m. In order to maintain that the generated random
number possesses good statistical properties, care must be
taken for choosing the appropriate parameters. In this pa-
per, we use m =2" -1, a=630360016, and ¢ =0.

There are many techniques for generating random vari-
ables (e. g., inverse transform, convolution, composi-
tion, acceptance-rejection ), and the particular algorithm
used should depend on the distribution from which we
wish to generate. In this paper, two types of continuous
distribution are used: uniform distribution and normal dis-
tribution. Therefore, only algorithms related to genera-
ting these two types of random variables are presented.
Random variables following other types of distribution
can also be obtained using simulation. They will not be
all listed here and one may refer to Law and Kelton**’ for
details.

The distribution function of a U(a,b) random variable
is easily obtained by inverting u = F(x) ,

x=F'"(u) =a+(b-a)u O0su<l1 (5)

The inverse transform method can thus be used to gen-
erate X:1) generate U~ U(0,1), and 2) return X =a +
(b-a)U. The constant b — a should be computed be-
forehand and stored for use in the algorithm to save the
computational effort. To generate normally distributed
random variables, the polar method” is used and it fol-
lows that .

1) Generate U, and U, as iid U(0,1); 2) Let V, =2U,
—1fori=1,2;3) W=V, + V5. If W>1, go back to
step 1). Otherwise, let Y = /( =2InW)/W X, = VY
and X, = V,Y. Then X, and X, are iid N (0, 1) random
variables. In step 2) a “rejection” of U, and U, can oc-
cur with probability 1 - /4.

A computer program called PERFORM has been devel-
oped using Visual Basic based on the methods outlined so
far. The input of PERFORM is the probability distribu-
tion and associated parameters for each variable in the
right-hand side of Eq. (3). The output of PERFORM
predicts PSI, and produces random samples of PSI,. This
information can be used to estimate its probability density
function ( PDF), cumulative density function ( CDF) ,
mean, standard deviation, confidence interval, median,
skewness, kurtosis, quintiles, and many other statistics
of PSI,.
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4 Numerical Study
4.1 Effect of model error and traffic

The effects of model error, increasing cumulative ES-
AL and traffic uncertainty on future performance are stud-
ied in two scenarios. In scenario 1, all the variables ex-
cept the model error, which is a normally distributed ran-
dom variable, are assumed to be constant taken from typ-
ical pavement structures as follows: D, =8, D, =7, D,

=11, my=1.25, my=1.15, a, =0.35, a, =0. 14, qa,
=0.11, M, =5 000, PSI, =4.5 and ¢ ~ N(0,0.35),
while cumulative traffic ESAL is set up at levels N, =1
x10°,2 x10° -+ 10 x 10°. The statistics of the simula-
tion results are shown in Tab. 1. Comparing the mean and
the median of the PSI, it is found that the mean is always
less than the median, meaning that the PSI is not sym-
metrically distributed. Further analysis indicates that the
skewness of PSI is —0. 895.

Tab.1 PSI vs. traffic Nq

ESAL/10° 1 2 3 4 5 6 7 8 9 10
Mean 4.500 4.371 4.322 4.284 4.253 4.225 4.201 4.178 4.157 4.138
Median 4. 500 4.380 4.334 4.299 4.270 4.244 4.221 4.200 4. 181 4.163
Std 0. 000 0. 050 0. 070 0. 084 0. 097 0. 107 0.117 0. 126 0. 134 0. 142
CvV 0. 000 0.012 0.016 0. 020 0. 023 0. 025 0. 028 0. 030 0. 032 0. 034

Fig. 1 plots the cumulative density function of PSI
vs. traffic. In Fig. 1, curves from bottom up corre-
spond to ESAL =1 x10°,2 x10°,---,10 x 10’ replica-
tions, respectively. As can be seen from Tab. 1, the
coefficient of variation (CV) increases from 0. 012 to
0. 034 as cumulative ESAL increases from 1 x 10° to
10 x 10°. The spreading of PSI increases when ESAL
increases as illustrated in Fig. 1. This indicates that the
variability of PSI will increase as ESAL increases,
even if there is no variability in the pavement material
and structure, and traffic. Such variability in PSI is
caused by pavement performance model uncertainty
mentioned in the previous section, which propagates and
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Fig.1 Cumulative density function of PSI vs. ESAL

aggrandizes through the pavement performance model.
Variables in scenario 2 are the same as those in scenar-
io 1 except that cumulative traffic ESAL is related to time

according to N, () ~ N (800 000z, (100 0004z)*), in
which 7 is time in years and N( ) is a normal distribution.
The simulation results are shown in Tab.2 and Fig.2. In
Fig.2 curves from bottom up correspond to Time =1,2,
---,10 year, respectively. It can be seen that as time in-
creases, the mean PSI decreases while the variability of
PSI in terms of CV increases considerably. Since uncer-
tainty associated with cumulative traffic ESAL is involved
in this scenario, the interaction between traffic and model
uncertainty results in further spreading of PSI as time pro-
gresses.
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Fig.2 Cumulative density function of PSI vs. time

Tab.2 PSI vs. time ¢

Time/year 1 2 3 4 5 6 7 8 9 10
Mean 4.500 4. 180 4.055 3.962 3.884 3.815 3.752 3. 696 3. 644 3.595
Median 4.500 4.155 4.022 3.921 3.837 3.764 3.697 3.637 3.581 3.528
Std 0. 000 0. 138 0. 190 0.229 0.262 0.290 0.317 0. 340 0.363 0.383
CV 0. 000 0.033 0. 047 0.058 0. 068 0.077 0. 086 0. 094 0. 101 0. 109

4.2 Effect of layer thickness

Three scenarios are examined to study the effect of
different pavement layer thicknesses D, ,D,, D, on fu-

ture performance. In Tab. 3, N(pu, o’) stands for a
normal distribution with mean y and standard deviation
o. All the other variables besides the layer thickness
are identical to that described in scenario 1 in section
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4.1. The CV of PSI is shown in Fig.3, in which dif-
ferent curves from bottom up correspond to ESAL =1 x
10°,2 x10%,--+,10 x 10’ replications, respectively. The
CV of PSI at various levels of traffic and thickness var-
iations increases linearly with the increase in the stand-
ard deviation of layer thickness. However, for the
pavement structure simulated in this paper, the range of

CV of PSI is within 5% of the mean value of PSI.

Tab.3 Three scenarios of various distributions of layer thickness

Scenario 1 Scenario 2 Scenario 3
D, =8 D, =7 D, =11
D, ~N(8,0.1%) D, ~N(7,0.1%) Dy ~N(11,0.27%)
D, ~N(8,0.2%) D, ~N(7,0.2%) D; ~N(11,0.4%)
D, ~N(8,0.3%) D, ~N(7,0.3%) D; ~N(11,0.67)
D, ~N(8,0.4%) D, ~N(7,0.4%) Dy ~N(11,0.8?%)
D, ~N(8,0.5%) D, ~N(7,0.5%) Dy ~N(11,1.0%)
D, ~N(8,0.6%) D, ~N(7,0.6%) Dy ~N(11,1.2%)
D, ~N(8,0.7%) D, ~N(7,0.7%) Dy ~N(11,1.4%)
D, ~N(8,0.8%) D, ~N(7,0.8%) Dy ~N(11,1.6%)
D, ~N(8,0.9?) D, ~N(7,0.9%) Dy ~N(11,1.8%)
D, ~N(8,1.0%) D, ~N(7,1.0%) Dy ~N(11,2.0%)
D, ~N(8,1.1%) D, ~N(7,1.1%)
) )

D, ~N(8,1.2° D, ~N(7,1.2°
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Fig.3 Coefficient of variation of PSI vs. different pavement
layer thicknesses D, , D,, D;. (a) CV of PSI vs. surface thick-
ness; (b) CV of PSI vs. base thickness; (c) CV of PSI vs. subbase
thickness

4.3 Effect of material properties

Three scenarios as shown in Tab. 4 are created to study
the effects of different pavement layer material properties
a,,a,,a, on future performance. Similarly, all the other
variables are identical to those in scenario 1 in section
4. 1. The results are plotted in Fig. 4. At light traffic accu
mulation, the CV of PSI increases linearly with the incr
ease in the standard deviation of layer properties, while
this relationship becomes nonlinear as traffic becomes
heavier. The range of CV of PSI is within about 10% of
the mean PSI.

Tab.4 Three scenarios of various distributions of material

properties
Scenario 1 Scenario 2 Scenario 3
a, =0.35 a, =0. 14 a; =0.11

| ~N(0.35,0.02%) @, ~N(0.14,0.01%)
a, ~N(0.35,0.04%) a, ~N(0.14,0.02%)
. ~N(0.35,0.06*) a, ~N(0.14,0.03%)
a, ~N(0.35,0.08%) a, ~N(0.14,0.04%)
| ~N(0.35,0.10%)  a, ~N(0.14,0.05%)

ay ~N(0.11,0.008?)
a; ~N(0.11,0.016%)
ay ~N(0.11,0.024%)
a; ~N(0.11,0.032%)
a; ~N(0.11,0.040%)
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Fig.4 Coefficient of variation of PSI vs. different layer mate-
rial properties a,, a,, a;. (a) CV of PSI vs. surface material a, ;
(b) CV of PSI vs. base material a, ; (c) CV of PSI vs. subbase mate-

rial a,
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4.4 Effect of drainage conditions

The effects of different pavement layer drainage condi-
tions m,, m, on future performance are investigated.
Three scenarios are shown in Tab. 5, where U (a,b)

stands for uniform distribution, and a and b are lower and
upper bounds. Once again, all the other variables are
identical to those in scenario 1 in section 4. 1. The results
are provided in Fig. 5.

Tab.5 Scenarios corresponding to base and subbase layer drainage coefficients

U (1) U(1.30,1.35) (2) U(1.15,1.25)

(3) U(L.05,1.15)  (4) U(0.80,1.05)  (5) U(0.75,0.95)

(1) U(1.30,1.35) my=(1),m3=(1)
(2) U(1.15,1.25) my=(2),m3=(1)
(3) U(1.05,1.15)
(4) U(0.80,1.05)
(5) U(0.75,0.95)

my =(1),m; =(2)
my :(2) ,my = (2)
my =(3),my =(2)

my =(2),my =(3)
my =(3),my=(3)
my =(4),my=(3)

my =(3),my =(4)
my =(4),my =(4)
my =(5) ,my =(4)

m, = (4) , My :(5)
my = (5) ,my = (5)

6_ +
F 4
st e
S e
4 + -u
=3[ %
&2
1_
0 1 1 1 1 1 1 1 1 1 ]
01 23456738910

Cumulatlve traffic ESAL/10°

== m2=(0),m3 =(0);+ m2=(1),m3 =(1)
——my =(1),m3 =(2); —— my =(2),my =(1)
——my =(2),my =(2); —— my =(2),my =(3)
—— my =(3),my =(2);-4- my=(3),my =(3)
my =(4), my =(3)
my =(4), m3 =(5)
my =(5), my =(5)

Coefficient of variation of PSI vs. drainage coefficients

-=-my=(3),m3 = (4);-+-
e my = (4),my = (4); e
-e- My =(5),m3 =(4);-+-
Fig.5
m, and m,

4.5 Effect of soil resilient modulus

The effect of soil resilient modulus M on future per-
formance is investigated with all the other variables iden-
tical to those in scenario 1 in section 4. 1. The results cor-
responding to seven normal distribution scenarios M, ~
N(5000,100°), N (5 000,200°), N(5 000,300%),
N(5000,400°), N(5000,500°), N(5 000,600%), and
N(5 000,700%) are provided in Fig. 6. The CV of PSI
increases linearly with the increase in the standard devia-
tion of the soil resilient modulus. The range of CV of PSI
is within about 5% of the mean PSI.
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1
0 100 200 300 400 500 600 70
My

Fig.6 Coefficient of variation of PSI vs. soil resilient modulus
My

4.6 Effect of initial performance

According to Eq. (3), future PSI, is linearly related to
initial PSI; in such a manner that when uncertainty of
PSI, propagates through Eq. (3), there is neither amplifi-
cation nor shrinkage of uncertainty in PSI;,, and there is
not interaction between PSI, and other predictor variables.
The results corresponding to five distribution scenarios
PSI, ~N(4.5,0.05%), PSI, ~N(4.5,0.1%), PSI, ~
N(4.5,0.15*), PSI, ~ N(4.5,0.2°), and PSI, ~
N(4.5,0.25%) are provided in Fig.7. The CV of PSI in-
creases nonlinearly with the increase in the standard devi-
ation of initial PSI. The range of CV of PSI is within
about 10% of the mean PSI.
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Fig.7 Coefficient of variation of PSI vs. initial pavement per-
formance PSI,

5 Uncertainty Propagation Through Perform-
ance Model

So far the effect of each single predictor variable on fu-
ture pavement performance in terms of PSI has been ex-
amined in previous sections. In this section complicated
but more realistic scenarios are investigated in which all
predictor variables are simultaneously treated as random
variables with various probability distributions.

First, the effect of the number of simulation runs on the
accuracy of performance prediction is investigated. The as-
sumptions are as follows: D, ~N(8,1.0°), D, ~N(7,
1.5°), D, ~N(11,2.0°), a, ~N(0.35,0.06"), a, ~
N(0.14,0.04°), a, ~N(0.11,0.015%), m, ~ U(1.15,
1.25), my ~U(1.05,1.15), M, ~N(5 000,500%), PSI,
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~N(4.5,0.1%), £ ~N(0,0.35%), and cumulative traffic
ESAL N, () ~N(800 000z, (100 000yz)*), in which ¢ is
time in years. These variables are treated as independent
random variables. The mean, standard deviation and CV
of the predicted PSI, at the end of the first, fifth and tenth
years are plotted in Fig. 8, respectively.
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Fig.8 Mean, standard deviation and coefficient of variation of
PSI vs. number of simulation runs. (a) Mean PSI; (b) Standard
deviation of PSI; (c¢) Coefficient of variation of PSI

As can be seen from these figures, there are significant
fluctuations in each of these statistics when the number of
simulation runs is small, say less than 100. The fluctua-
tion goes through a transition period when the number of
simulation runs increases from 100 to 1 000. As the num-
ber of simulation runs approaches 10 000, all three statis-
tics asymptotically tend to become stable and remain at a
fixed level, which can ensure an accurate simulation re-
sult of performance prediction. Based on this analysis,
the number of simulation runs is chosen as 10 000 in all
the scenarios studied in this paper.

Since all the predictor variables in this scenario are ran-
dom variables, the prediction of future performance be-
comes complicated owing to the complex interaction
among the predictor variables in Eq. (3). Descriptive
statistics of predicted PSI, are shown in Figs.9 to 12, re-
spectively. As time increases, both the mean and the me-
dian of predicted PSI, decrease nonlinearly from 4.2 to
3.4, while the standard deviation and CV of predicted
PSI, increase considerably. Fig.9 shows that the median

is always greater than the mean, meaning that the distri-
bution of PSI, is asymmetric and there is consistent skew-
ness at all time (e. g. , for different cumulative ESAL). It
is further evident in Fig. 11 that the skewness of predicted
PSI, is always negative, suggesting that the distribution has
a long tail towards the left-hand side of the mean. The
kurtosis in Fig. 12 decreases from 25 to 2, meaning that as
time increases, PSI, distributes more widely with heavy
tails rather than a sharp peak. Figs. 13 and 14 provide a 3-
dimensional view of PSI, vs. time and its PDF and CDF,
which further confirms the conclusions.
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Fig.9 Mean and median of predicted PSI vs. time
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Fig.13 3-D view of PSI, vs. time and its probability density

function

Fig.14 3-D view of PSI, vs. time and its cumulative density

function

6 Conclusion

In this paper, a pavement performance prediction model
is formulated based on the AASHTO pavement design equa-
tion. Uncertainty associated with future pavement per-
formance in terms of PSI is affected by the variability of
pavement material and structural properties, the uncer-
tainty of performance model, and the uncertainty of pre-
dicted cumulative traffic. A distribution-based method is
developed to predict future PSI based on the pavement
performance model. This method treats all the predictor
variables as random variables with certain distributions. A
computer program PERFORM using Monte Carlo simula-
tion is developed to implement the numerical computa-
tion. Simulation results based on pavement and traffic pa-
rameters used in this paper show that traffic, surface layer
material property and initial pavement performance are the
most significant factors affecting pavement performance.
The distribution-based method is more capable than con-
ventional methods to deliver more accurate performance
prediction. The methodology, pavement
model, and computer software PERFORM can be used by
transportation agencies for pavement management purpo-

performance

SES.
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