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Abstract: To reduce vehicle emissions in road networks, a
new signal coordination algorithm based on approximate
dynamic programming ( ADP) is developed for two
intersections. Taking the Jetta car as an experimental vehicle,
field tests are conducted in Changchun Street of Changchun
city and vehicle emission factors in complete stop and uniform
speed states are collected. Queue lengths and signal light
colors of approach lanes are selected as state variables, and
green switch plans are selected as decision variables of the
system. Then the calculation model of the optimization index
during the planning horizon is developed based on the basis
function method of the ADP. The
algorithm is employed to update the weighting factor vector of
the approximate function. Simulations are conducted in Matlab
and the results show that the established algorithm outperforms
the conventional coordination algorithm in reducing vehicle
emissions by 8.2% . Sensitive analysis of the planning horizon
length on the evaluation index is also conducted and the
statistical results show that the optimal length of the planning
horizon is directly proportional to the traffic load.
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temporal-difference

approximate dynamic

he coordination of traffic signals located along urban
T arterials is one of the most effective methods to im-
prove traffic flow movements. In view of the importance
of signal coordination, a number of such algorithms have
been developed' ™. Among these algorithms, traffic re-
sponsive coordination is the most widely implemented al-
gorithm at present. The responsiveness to traffic means
that timing parameters such as offsets are adjusted accord-
ing to real-time traffic information. The real-time traffic
data are usually detected by inductive loops. Following
these ideas, some famous control systems such as
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SCOOT", SCATS"' and PRODYN'" have been succes-
sively developed and implemented in cities worldwide.

In recent years, a new type of the traffic responsive
control algorithm™ has been developed. It is accom-
plished on a phase-by-phase basis, without any explicit
reference to the notion of cycle length or green allocation.
Detectors are placed upstream of the stop line and the giv-
en planning horizon is split into discrete small stages. At
the start of each stage, the downstream signal controller
optimizes the starting and ending time of the coordination
phase to facilitate the movements of the traffic flow that
departs from the upstream intersection and arrives at the
downstream stop line in the next planning horizon. Since
the optimization needs the cooperation of the upstream in-
formation and the downstream controllers, it can thus be
called as another type of signal coordination.

The above type of signal coordination can be expressed
as a multi-stage optimization process because the planning
horizon consists of multiple discrete stages. Dynamic pro-
gramming ( DP) developed by Bellman is so far the only
solution for optimization over stages'”’. Nevertheless, the
DP implication for traffic responsive control is limited.
The computational demand in the recursive calculation of
Bellman’s equation is exponential to the size of the state
space, the information space and the action space. This
scenario is often described as the three curses of dimen-

sionality!""

. To overcome the difficulties in applying DP
and to preserve the fundamental features of dynamic con-
trol, a favorable option is approximation. An approxima-
tion to DP usually aims to reduce state space by aggrega-
tions or a continuous approximation function. Such an
approach is frequently denoted as approximate dynamic
programming ( ADP).

Therefore, the purpose of this paper is to develop a
new signal coordination algorithm and the study differs
from previous studies in three ways. First, the ADP tech-
nique is applied to solve the multi-stage optimization
problem. Secondly, vehicle emission, which is at present
one of the most serious problems the public is concerned
about, is selected as the optimization objective, instead
of delay and stops. Thirdly, the impact of the planning
horizon length on algorithm performance is studied, and
the relationship between the planning horizon length and
the traffic load is developed, which is useful to determine
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optimal planning horizon length.
1 Approximate Dynamic Programming

In this section, we first bring forward the DP algorithm
and then introduce the formulation of the ADP.

1.1 Dynamic programming

Take a planning horizon that has N steps as an exam-
ple, and let x C X be the state variable of the system and u
C U be the decision variable. For current stage ¢, the
one-step cost function is expressed as g(x(t), u(1), t).
The DP technique is to solve the decision process for the
entire planning horizon and find the optimal decision vari-

able sequence. As illustrated in Fig. 1, the value function
J is

Jix(n), 1] = Zyk"g[X(k),u(k),t] (1)

where J is the system value from step 7 to the ending step
of the planning horizon; vy is a discount factor and it ran-
ges from 0 to 1. 0. It reflects the system preference to the
one-step costs in different steps. If y =1.0, then J is the
sum of one-step costs of the steps from ¢ to N and the sys-
tem gives equal weight to each step. Otherwise J is the
sum of the discount costs of the steps.

u(t) u(t+1) u(t+2) u(N)
1 ¢ t ‘ t+1 i t+2 ¢ N
Step 1 1 1 1 1 1 1 1
g(t) g(t+1) g(t+2) g(N)
N s
—~

Planning horizon

Fig. 1
Eq. (1) can be expanded as

JIx(t), 1] =y glx(1), u(n), 1] +y'glx(t+1),
u(t+1), t+1] +...+y" "g[x(N), u(N), N] =
glx(t), u(t), 1] +J[x(t+1), t+1] (2)

The optimization of DP is to minimize the value func-
tion.

min J[ x(1t), t] = {I}icnu{g[x(t), u(e), t] +
Jx(t+1),t+1]} (3)

Finally, the optimal decision at step ¢ is u” (t) =
aru%)rcnyin{g[x(t), u(t)y,t] +Jx(t+1),t+1]}.

Eq. (3) offers a simple way of problem solving, but it
can be computationally intractable even for very small
problems. The reason is that the algorithm has to loop
over the entire state space to evaluate the optimal decision
at a single step. The computational load, therefore, in-
This
is often described as the three curses of dimensionality.

creases exponentially with additional state spaces™ .

To solve this problem, an ADP technique is brought for-
ward.

1.2 Forms of approximate dynamic programming

The one-step cost function g( +) can be easily ob-
tained. However, the calculation of J[x(z+1), ¢+ 1]will
cost much time because it covers the following N — ¢ steps
and there are lots of decision branches when approaching

the last step. If we find a simple value function }( ) to
approximate J( -), the problem of the curses of dimen-
sionality may be solved'""'. Then Eq. (3) can be rewrit-
ten as

Jix(), 1] =glx(), u(t), 1] +Jx(t+1),t+1] (4

Illustration of dynamic programming process

The calculation of ]( +) includes two steps.

Step 1  Selection of approximation value function

Generally, there are four ways to approximate the val-
ue function. They are the look-up table method, the basis
function method, the polynomial method and the neural
network method. Among the four ways, the basis func-
tion method is frequently used and in this study it is also
employed.

Jx(0), 1) = 3, ¢/ (x(0)W, (5)

where ¢p(X) = {,(x), b, (%), ..., Py(x) }7, and it is the
feature-extraction function of the state space. W, ={W,,
W,, ..., WN}T is the weighting factor vector.

Step 2 Update weighting factor vector

The determination of W, is a critical procedure of the
ADP because it decides the approximate precision. In this
study a temporal-difference (TD) algorithm is employed
to update W, in real time.

The one-step TD is expressed as

8, =glx(), u(n), 1] +yJlx(r+1),1+1] = J[x(1), 1]
(6)

For each time step ¢, the TD algorithm updates W, ac-
cording to

WI+1 = W/‘ + T]ISIZI (7)

where 7), is the learning factor and it decides the conver-
gence rate of the ADP. z, is the eligibility trace vector and
it records the visited frequency of a state by the recursive
method. If a state is visited, then its eligibility will in-
crease, otherwise the eligibility will decrease. z, can be
obtained by
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z, = Z (YD) p(x(k)) (8)

where A is the eligibility trace factor and it represents the
dependent degree of historical information, 0 <A <I1.
The update process of z, is

Z, =YAZ, +P(x(t+1)) (9)

2 Proposed Signal Coordination Model

2.1 Optimization objective

At present, reducing vehicle emissions on road net-
works is an issue that the public is concerned about.
Therefore, developing a traffic signal coordination algo-
rithm to reduce vehicle emissions becomes a difficult task
for traffic engineers. In this study, vehicle emission is se-
lected as the optimization index. The amount of emission
is affected by vehicular running states. For a vehicle that
departs from the upstream stop line and moves towards a
downstream signal, its running state can be classified into
two groups: complete stop and non stop. To model con-
veniently, the non complete stop state (such as accelera-
tion and deceleration) is ignored because the proportion
of travel time corresponding to the non complete stop
state to total travel time on the link is very small, espe-
cially in unsaturated conditions. The non stop state in this
paper means vehicles running at an even speed.

Vehicle emissions mainly include three gases: NO,,
HC and CO. To obtain the real vehicle emission factors,
we conduct field experiments in Changchun Street of
Changchun city. The Jetta car is selected as the experi-
mental vehicle and its emission factors in different run-
ning states are collected (see Tab. 1).

Tab.1 Vehicle emission factors of car in Changchun Street
Running state Exo /(mg +s™') Eye/(mg-s™') Eco/(mg-s™')

0.17 2.60 0.53

0.90 2.05 0.38

Non stop
Complete stop

The three gases do different degrees of harm to the en-
vironment. According to Ref. [ 11], we define the
weights of the three gases as 0. 15, 0.70 and 0. 15, re-
spectively.

2.2 Traffic arrival pattern prediction

As shown in Fig.2, loop detectors are placed near the
stop lines of the approach lanes. When the green light
starts, the passing time of each vehicle in the platoon can
be detected.

Stop line —
Lane __4 O
Lane . [:l
Lane I\ ]

Loop detector —4

Fig.2 [Illustration of vehicle detector location

Let L denote the distance between two adjacent inter-
sections. Vehicles move downstream at an even speed v,
m/s. So the travel time ¢, equals L/v. Vehicle data are
sampled every Af s and in this way the platoon departure
pattern can be obtained. As shown in Fig. 3, the platoon
departure pattern can be projected to the downstream stop
line.

Distance/m
Upstream [[ﬂ]]ﬂ]]ﬂ]] Departure pattern
intersection x ]
\\
\
Y =mm Red light
\
= Green light
\\
Downstream il Arrival pattern
intersction -

A
r————

Time/s
Fig. 3  Projection of upstream platoon pattern to downstream

signal

From Fig. 3, we can find that the downstream intersec-
tion can obtain arrival vehicle information ¢, ahead of their
real arrival times. the problem is that the
length of planning horizon T is usually greater than f,.
For example, when T =90 s and 7, =40 s, the down-
stream controller can only obtain the real vehicle informa-
tion of the oncoming 40 s. No vehicle information can be
used for the following 50 s. How to obtain the traffic vol-
ume for the 50 s is a critical problem for signal coordina-
tion. A common way is prediction. As described in Fig.
4, we can divide the planning horizon into two sections.

However,

One is the head section, during which the real traffic vol-
ume is applied. The other is the tail section, during
which the predicted traffic volume is applied.

Planning horizon

) N
Head i
Time I ca I Zail I -
Now ¢ * t+1e, + t+T
Real traffic volume Predicted traffic volume

Fig.4 Division of planning horizon

The OPAC uses the average traffic volume of the past 5
min for the tail section and the results of field tests indi-
So in this study we
also use this method. Let g, denote the traffic volume of
the tail section,

cate that this method is effective'” .

N,

q;
Q1=zﬁ

i=1 s

(10)

where ¢, is the traffic volume of the i-th step, pcu/h; N,
is the number of steps in the past 5 min and it equals 300/
At; At is the time duration of each step, s.

2.3 Timing plan optimization

In this section, the timing plan optimization process
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using the ADP technique is introduced. As described in
the above section, T denotes the time length of the plan-
ning horizon; At is the time duration of each step. Traffic
data is also sampled every At s. So the planning horizon
can be divided into N steps, N =T/At.

Before modeling, the following descriptions about the
system are given:

1) Vehicles arriving at one step have the same move-
ment states;

2) The start-up lost time is ignored and all the ap-
proach lanes are unsaturated;

3) At the start of each step, the system decides to ei-
ther extend the current green phase or turn the green light
to the next phase;

4) The green time duration of each phase should not be
smaller than the minimum green time nor greater than the
maximum green time.

For an intersection with M approach lanes, its state can
be defined by the queue length and the signal light color
of each lane. The queue length represents the traffic state
and the signal light color represents the control state. The
formulation of the control system includes the following
five steps.

Step 1 Definition of system state

For m =0, 1, ..., M, let [,(m) denote the number of
queue vehicles of lane m and let s,(m) denote the traffic
signal indication during step ¢. Then,

dy(l) | ;(1) |
=g @ s=§: Q@ v
L) U Lsl(an) L
_ [l if signal is green for lane m
s,(m) = {0 if signal is red for lane m (12)

We denote the arrival traffic by vector w and the depar-
ting traffic by vector y as

.1 o oD O
wI: % % yt: % % (13)
Ld,(ay L D

The value of each element in w can be obtained by the
traffic arrival pattern prediction shown in section 2. 2.
The calculation process for y,(m) is stated in Step 3.

Step 2 System decision

At the start of each step, available decisions of the sys-
tem are extending the current green phase or switching the
green phase to the next phase. Let u, denote the system
decision at step t. Then,

1 switch green to next phase

u,(m) ={ (14)

0 extend current phase for one step

Step 3 Transition of system state

Once the system has made a decision on signal status,
the state of the intersection will be changed. The transi-

tion of the signal state vector s, can be depicted as
s, (m) =(s,(m) +u,(m))mod, (15)

The transition of the queue length is determined by the

arrival traffic and the departing traffic. So,
lt+](m) :lt(m) _.v/(m) +Wz(m) (16)

y,(m) is critical for Eq. (16) and the calculation can be
classified into three conditions:

y.(m) =
0 s,(m) =0
q,(m) s,(m) =1,y,_,(m) +w,(m)=q,(m)

s,(m) =1, y,_,(m) +w,(m) <q,(m)
(17)

Y, (m) +w,(m)

where g (m) is the number of vehicles discharged in satu-
ration flow rate during each step and it equals AzS,,. S, is
the saturation flow rate of lane m.

Step 4 One step cost function and value function

For lane m, the cost of one step is the total amount of
vehicle emission during step .

g,(m) =[1,(m) +w,(m)]E At +y,(m)E, At (18)
E is the emission for a complete stop vehicle,

E,=0.15E, , +0.7E,. ,+0.15E,, ., (19)

where E, ., Eyc . and Ey, . are emission factors of NO_,
HC and CO for a complete stop vehicle, respectively.
E, is the emission for a non stop vehicle,

E, =0.15E ,,+0.7Ey. +0.15E,, ,,  (20)

where E E,. ., and E,,  are emission factors of
NO,, HC and CO for a non stop vehicle, respectively.
For the intersection with total M lanes, the one-step

cost function during step ¢ is

NO_ns?

g(M) =Y g(m)

m=1

(21

For current step ¢, the value function of the system dur-
ing the planning horizon is

Jx(D),u(t)] =g,(M) +J[x(t+1),u(t+1)] (22)

The optimization is to find the optimal decision for step
t that will minimize the value function, namely,

u'(r) =arg I(r}icnu{g(M)+J[x(t+1),u(t+1)]} (23)

The optimization is conducted at the start of each step,
so it can dynamically optimize decision variables every At
s to adapt to the real time change of the system state.

Step 5 Approximation to value function

The basis function method is selected to approximate
the value function. As depicted in Step 1, {I/, s}can re-
present the system state. For step ¢t and lane m, the fea-
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ture-extraction function of the state space ¢,(m)is

0
¢ ([) . l,(m)] S,(n) =0 (24)
lz(m)] Sr(l’l) -1
0
The weighting factor is defined as
0
s,(n) =0
W (1) = ;W(’")] (25)
w(m)] s(n) =1
[ 0

Then the approximated value function is

Jx(r+1),0+1) = Y r(x(r +1) W, (26)

m=1
3 Case Study
3.1 Simulation environment

The developed algorithm is tested in a Matlab environ-
ment. The sketch of the test network and the phase

diagrams are shown in Fig. 5. Each intersection contains
three phases and phase 1 is selected as the coordinated
phase. The minimum green time of the left-turn phase is
10 s and that of the straight phase is 15 s. To compare the
benefits of the established algorithm, the base algorithm
and the new signal coordination algorithm are tested in
this paper. The base algorithm is the conventional signal
coordination algorithm. Cycle length is determined by
Webster’s model and the green split of each phase is opti-
mized based on the equal degree of saturation principle.
Offsets among intersections are determined by the numeri-
cal method""”
established in this paper. Parameters of the ADP algo-
rithm are set as follows: y =0.12, 1 =0.001 and A =
0.3. The length of the planning horizon is fixed at 90 s.

The input traffic volumes of the six entrances are
shown in Tab.2. T, is the time point during simulation.
Because we want to test the ability of treating the dynamic
traffic states of the two algorithms, the volumes of en-
trance 1 and 2 are set changing with time.

. The new signal coordination algorithm is

Entrance 3 Entrance 4
‘ ﬂ Phase 1 N
— \ ~—
- S —=— Entrance 2 S
1 ‘ 2 \— Phase 2 /
Entrance 1 — ‘ — =il
* 450 m m Phase 34\ \?

Entrance 5

Entrance 6

Fig.5 Sketch and phase diagram of the two intersections

Tab.2 Input volume of each entrance pcu/h

Entrance 1 2 3 4 5 6

Volume 1 000 +200sinT7 1 000 +200cosTy 300 300 300 300

3.2 Simulation results

Total vehicle emissions of the coordinated phases in the
network are collected and the data are shown in Tab. 3.
From the table we can find that compared with the base
algorithm, the new developed coordination algorithm can
reduce vehicle emissions by 8.2% .

Tab.3 Vehicle emissions of coordinated phases in the simula-
ted network g

. New signal coordination .
Tested algorithm Base algorithm

algorithm

51.216

Vehicle emissions 55.440

3.3 Sensitive analysis of planning horizon length

In previous related studies, the length of the planning
horizon is fixed (i.e. 90 s). However, it is known to us
that the traffic volumes of the tail section used in the ADP
algorithm are predicted volumes and there must be predic-
tion errors. If the length of the planning horizon is long,

then the total prediction error will be large and lead to the
degradation of control performance. If the planning hori-
zon is set short, the algorithm will not consider the global
traffic information and will not respond to the change of
traffic state quickly.

Since the prediction error is inevitable, we can avoid
the degradation of performance to some extent by setting
the optimal length of the planning horizon. In this sec-
tion, experiments are conducted to discover the relation-
ship between the performance and the length of the plan-
ning horizon. The procedure of the simulation includes
the following steps.

Step 1  Obtain control performance using real traffic
volume

In this step, real traffic data are generated first in the
Matlab environment. Then the developed signal coordina-
tion algorithm operates using real data over the entire
planning horizon rather than over the head section. So
there is no prediction error of traffic volume. In such a
situation, the longer the planning horizon, the better the
signal control. So in this step the planning horizon is set
as 120 s. The input traffic volumes of entrances 1 and 2
are ranged from low to heavy and they are shown in
Tab. 4.
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Tab.4 Input volumes of entrances 1 and 2 for simulation ex-
periments pcu/h
Scenario Entrance 1 Entrance 2
1 500 +200sinT 500 +200cosT
2 600 +200sinT7 600 +200cosT,
3 700 +200sinT 700 +200cosT
4 800 +200sinT 800 +200cosT
5 900 +200sinT 900 +200cosT
6 1 000 +200sinT 1 000 +200cosT
7 1 100 +200sinT 1 100 +200cosT
8 1 200 +200sinT 1 200 +200cosT
9 1 300 +200sinT 1 300 +200cosT
Step 2 Obtain control performance using predicted

volume over tail section

In this step, predicted traffic volumes are applied to the
tail section of the planning horizon. To test the impact of
the planning horizon on control performance, the length
of the planning horizon is increased from 40 to 120 s with
a step of 10 s. So simulations are conducted nine times
for each scenario.

Step 3 Compare evaluation indices collected in Steps
1 and 2 for the same scenario

Because each scenario is simulated nine times in Step
2, accordingly there are nine indices. Comparing the nine
indices to the index in Step 1, the closer the nine indices
with the index in Step 1, the better the corresponding
planning horizon in Step 2. The optimal planning horizon
length for each scenario is found and they are shown in
Tab. 5.

Tab.5 Optimal planning horizon for each scenario

Optimal length of planning horizon/s
60
70
70
80
80
80
90
100
110

Scenario

O 00 N AN R W N =

From Tab. 5, we can find that for the scenarios with
low traffic demand (i. e. scenarios 1 and 2), the optimal
length of the planning horizon is short. However, with
the increase in traffic demand, the optimal length also in-
creases. This phenomenon can be interpreted as follows.
When traffic demand is low, the algorithm is sensitive to
the prediction error, and the short length of the planning
horizon can reduce the errors of the tail section. When
traffic demand is high, the length of the arrival platoon at
the stop line is also increased and the system is requested
to optimize the traffic in a long time period which can
cover the entire arrival platoon. In such situation, the
long length of the planning horizon is produced.

Though Tab. 5 shows the relationship between traffic

demand and the length of the planning horizon, the length
is closely related to signal control types, traffic volume
prediction errors and so on. The determination of the op-
timal length should be tried many times by simulations or
field tests before it is applied.

4 Conclusion

This paper develops a new signal coordination algo-
rithm for two adjacent intersections based on the ADP
technique. Compared with the conventional coordination
algorithm, this new algorithm has two obvious character-
istics. First, it can optimize timing parameters in real
time and the transition between adjacent coordination
plans is not requested because there are no common cycle
lengths and offsets. Secondly, the conventional algorithm
needs to consider the discharged and arrived platoons in
both directions. However, the new algorithm only facili-
tates the arrival platoons, thus, it has a low computation-
al load. Especially when there is large difference between
two directional traffic volumes, the new algorithm can al-
so achieve good performance.
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