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Abstract: Due to the fact that conventional heuristic attribute
reduction algorithms are poor in running efficiency and
difficult in accomplishing reduction
mechanism in the decision table, an adaptive multicascade
attribute reduction algorithm based on quantum-inspired mixed
co-evolution is proposed. First, a novel and efficient self-
adaptive quantum rotation angle strategy is designed to direct
the participating populations to mutual adaptive evolution and
to accelerate convergence speed. Then, a multicascade model
of cooperative and competitive mixed co-evolution is adopted
to decompose the evolutionary
subpopulations according to their historical performance
records, which can increase the diversity of subpopulations
and select some elitist individuals so as to strengthen the
sharing ability of their searching experience. So the global
optimization reduction set can be obtained quickly. The
experimental results show that, compared with the existing
algorithms, the proposed algorithm can achieve a higher
performance for attribute reduction, and it can be considered
as a more competitive heuristic algorithm on the efficiency and
accuracy of minimum attribute reduction.
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the co-evolutionary

attribute  species  into

self-
performance experience

ough set theory is a valid mathematic tool to handle
R imprecision, uncertainty and vagueness. Attribute
reduction in rough set theory has been recognized as an
important approach for feature selection and knowledge
discovery""
and induce the minimum length of decision rules in an in-

. It helps us to find the minimum attribute set
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formation system. However, the problem of finding a
minimum reduction is more difficult and it has been prov-
en to be an NP-hard problem by Wong and Ziarko"'.
Due to the fact that traditional algorithms often fail to find
optimal solutions, many research efforts have shifted to
evolutionary algorithms (EA) to find near-optimal solu-
tions, such as the genetic algorithm (GA)"™', ant colony
optimization ( ACO)'™, and particle swarm optimization
(PSO)™, etc. These algorithms can often obtain high
quality solutions, but each performance deteriorates rapid-
ly when the dimensionality of the search space increases
so that thousands of seconds may be required. Till now,
they are not quite effective in the sense that the probabili-
ty for them to find a minimum attribute reduction in a
large information system appears to be lower.

The co-evolution, inspired by the reciprocal evolution-
ary change of the cooperative or competitive interaction
between different species, has recently been a hot research
topic of computational intelligence. Several studies have
shown that the introduction of ecological models and co-
evolutionary architectures represent a significant improve-
ment over conventional evolutionary algorithms'”. The co-
evolutionary algorithms can be generally classified into two
main categories: competitive co-evolution and cooperative
co-evolutionary algorithm. For the competitive co-evolu-
tionary algorithm, various subpopulations will always fight
to gain an advantage over the others. However, for the co-
operative co-evolutionary algorithm , subpopulations will
exchange information within each other during the evolu-
tionary process. Both the competitive co-evolutionary al-
gorithm and the cooperative co-evolutionary algorithm
have their unique advantages for maintaining diversity in
the species, and they have successfully been applied in
many large difficult optimization problems .

During the practical process of attribute reduction,
there are some interacting attribute subsets which may not
be decomposed in one subpopulation because there is al-
most no prior information about how the attribute subsets
interact. It turns out that there would be a major decline
in the overall performance of traditional co-evolutionary
algorithms when these interacting attribute subsets are de-
composed in different subpopulations.
need for more sophisticated co-evolutionary algorithms

Thus arises the

capable of capturing the interacting attribute subsets and
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decomposing them in the same subpopulation. So this
will be extended to better performance in the competitive
solution for minimum attribute reduction.

As a novel evolutionary algorithm, the quantum-in-
spired evolutionary algorithm was proposed by Han and
Kim"”, in which the Q-bit individual has a better charac-
teristic of population diversity than any other representa-
tive. Meanwhile, the quantum rotation gate is used as the
update mechanism, which can guide the searching direc-
tion into the optimal area and accelerate the algorithm’s
convergence speed. As for considering the superiorities of
the quantum-inspired evolutionary algorithm and the coop-
erative and competitive co-evolutionary algorithm, we
combine them to put forward a novel adaptive multicascade
attribute reduction algorithm ( QMCAM _ AR) based on
quantum-inspired mixed co-evolution. The adaptive quan-
tum rotation angle strategy and the cooperative and com-
petitive mixed co-evolutionary multicascade model are
adopted to find the global optimization solution of attribute
reduction quickly. Experimental results demonstrate that
the proposed algorithm achieves a promising performance
for minimum attribute reduction, and it is better in feasi-
bility and effectiveness than other algorithms.

1 Minimum Attribute Reduction Model

Let I = (U, A) be an information system, where U,
called universe, is a nonempty set of finite objects; A is a
nonempty finite set of attributes such that a: U—V, for
every ae A; V, is the value set of a. In a decision sys-
tem, A = CUD where C is the set of condition attributes
and D is the set of decision attributes.

Definition 1 Given an arbitrary set xC U, the P-low-
er approximation of X, denoted as PX, is the set of all el-
ements of U, which can be certainly classified as ele-
ments of X based on the attribute set P. The definition is
expressed as

PX={x|[x],eX} (1)

The P-upper approximation of X, denoted as PX, is
the set of all elements of U, which can be possibly classi-
fied as elements of X based on the attribute set P. The
definition can be also expressed as

PX={x|[x],NX#} (2)

Definition 2 Let P, QCA, it is said that Q depends
on P in a dependency degree k(0 <k<1), denoted P=

L0, if
| POS,(Q) |

k=vy, = 3
v,(Q) ‘ U ‘ (3)
where | - | is the cardinality of a set. | POS,(0Q) l,
called positive region, is defined by
|POS,(Q) | = U PX (4)
XeU/Q

The positive region contains all the objects in U that
can be uniquely classified into blocks of the partition U/Q
by means of the knowledge of attributes P. The quantity
k can be used to measure the degree of dependency be-
tween Q and P.

Definition 3 During the attribute reduction, the irrel-
evant attributes can be removed from the original attribute
set and the remaining attributes can keep the discrim-
inability as the same as the original attribute set. Let R be
a subset of C, and then R is said to be a reduction if

RED = {RCC | y,(D) =y (D), Y BCR,y,(D) #y.(D)}
(5)

A reduction with minimal cardinality is called a mini-
mum reduction, and it can be written as

RED

={ReRED| VR eRED, |R| < |R'|} (6)

Minimum attribute reduction can be formulated as a

nonlinearly constrained combinatorial optimization prob-
lem as follows:

F(x) =min \ R \ (7)
s. t. RCC

(D) =vy.(D)
VgeR, ')’R\(q)(D) =yx(D)

2 Adaptive Multicascade Attribute Reduction
Algorithm

2.1 Fitness function of attribute reduction
In the QMCAM _ AR algorithm, the fitness function
considers both the size of the attribute subset and its eval-

uated suitability. It will be changed with the evolutionary
process of attribute reduction and it can be calculated as

. Vg(,v)(D)
Fitness(x) = ay (D) yo(D)
(1 o €@ | = [R(x) | Core(é(x)
[ C(x) | Yeco (D)

(8)
where y,(D) is the classification quality of condition at-
tributes R relative to decision attributes D; | C(x) | is
the total number of attribute features; | R(x) | is the

number of “1” in a coded position or the length of the se-
lected attribute subsets; £ (x) is the attribute subsets;
Core (£(x)) is the reduction core of the attribute subsets,
and a(a € [0, 1]) is the parameter corresponding to the
importance of the classification quality and the subset
length.

2.2 Self-adaptive quantum rotation angle

In order to automatically update the rotation gate, adjust
the subpopulation size and accelerate the convergence speed,
we give a novel strategy of the adaptive quantum rotation
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angle among mutual co-evolutionary subpopulations.

A quantum angle is defined as an arbitrary angle 6 and
a Q-bit is presented as [@]. [0] is equivalent to the origi-
sin( §)
cos(6) )’
+ \ cos (0) \ N spontaneously. Then the m Q-bit

nal Q-bit as [ and it satisfies that \ sin( §) \ :

D Dl R ] can be replaced by [ 6, | 6, |
B] BZ B3 . ﬁm : ?
0, | ... | 6, | 1. The rotation gate is replaced as

0, =s(a,, B,)AO (9)

where s(«;, B;) is the rotation sign of §,, which can de-
termine the direction, and A is the magnitude of the ro-
tation angle. The lookup table mechanism, adopted in the
traditional selection of the rotation angle, will cause the
evolutionary algorithms to be prematurely convergent and
fall into a local optimum inefficiently''". In this paper, a
novel and efficient self-adaptive quantum rotation angle is
designed. The angle distance between Q-bit ( \ ),
| @')) is shown in Fig. 1 and it is formulated as

A6, leb ey = arctan(%) - arctan( g )

oy =al0)+8|1), @) =a’[0)+p"[1) (10)

11>
3 _l(a',B’)
p——\(@.B)
A
o af oy

Fig.1 Angle distance between | ¢) and |¢')

The self-adaptive quantum rotation angle 6, is defined as

0,-6,\"
6, =11- =] A0
l ( ab_aw) e

where A, . is the angle-distance between the i-th Q-bit

(1)

and the basic state; @', represents the global best fitness
solution in all the co-evolutionary subpopulations; @/, is
the corresponding global worst fitness; @, is the local best
fitness individual in a decomposed subpopulation; 6, is the
corresponding local worst fitness individual; and m is the
number of iterations. The self-adaptive adjusting steps of
the quantum rotation angle are updated as follows.

Algorithm 1 The main adaptive adjusting steps of the
quantum rotation angle

1) If ((f(b) =A%) A(b,=0) A(x,=1))

//x; is the i-th Q-bit of the current chromosome,

and b, is the i-th Q-bit of the object;

//f(x) is the fitness of x,, and f(b) is the fitness of

b,.
Q;
A6 I o), = :Aaiw 0y = —arctan ——;
0, = _(1_61,— W) arctan —-.
0b_0w i
2) Else if ((fib) =f(x)) N(b,=1) A(x,=0))
w a;
Ag‘\gﬁ, * :AB,‘KPLH;‘ :T_arctan -
(= (1
0, = ( > (1 9b—t9w) arctanlBi.

3) Else A6 |,, ., =0 and ¢, =0.

2.3 Cooperative and competitive mixed co-evolution-
ary model

In the QMCAM _ AR algorithm, a cooperative and
competitive mixed co-evolutionary model for attribute re-
duction is adopted to decompose the evolutionary attrib-
utes. The cooperation process mainly includes the discov-
ery of interdependent attribute subsets within the same
species and their reasonable decompositions.
shuffled frog-leaping algorithm ( SFLA), which is a com-
bination of the genetic-based memetic algorithm and the
social behavior-based particle swarm optimization algo-

rithm, has the efficient mathematical function and global
[12]

Since the

search capability’ ~, we choose it as the subpopulation
optimizer. And the competitive process, in which the
global best or worst subpopulation and the local best or
worst individuals are all selected out, will trigger a poten-
tial race in two kinds of competitive pools so as to im-
prove their respective contributions to the overall fitness.
The main steps of cooperative and competitive mixed co-
evolution are as follows.

Algorithm 2 The main steps of cooperative and com-
petitive mixed co-evolution

1) Decompose the population S into n subpopulations
S, based on the performance experience record R, (R, is set

n

to 1 initially), namely S = z S,;, and initialize S, ; as
i=1

the j-th individual of the subpopulation S;.
2) For each §, do
Create the i-th competition pool P, for the subpopu-
lation S,.
Forj=1to \Si\ do
Assign Pareto rank to S, ; and calculate niche count
of S, ;3
Evaluate the fitness of S, ; and compare with the
competition fitness of its brother individual by the roulette
wheel.
Select D, as the best fitness individual representative
for the current subpopulation S.
Construct the elitist performance experience record R,,
fo =t
Jo

and it is updated according to R, = , where f, is the
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best fitness and f, is the worst one of the subpopulation.
Optimize the subpopulation S, separately with SFLA

in its respective P, for a predefined number of fitness e-
valuations.

3) Create the elitist competition pool P, for represen-
ting the whole population.

4) Insert all the elitist individuals D = {D,, ..., D, } into
P_ with the performance experience record list R = {R,,
.- R}

5) Shuffle all the elitist individuals and evaluate each
D, by combining with other brother elitist individuals.

6) Determine the winning global elitist individual D,
and its corresponding subpopulation S..

7) Decompose the population S based on R, and go to
2) to form the multicascade model until the stopping cri-
terion is met.

2.4 Main processes of the QMCAM_AR algorithm

Based on the self-adaptive quantum rotation angle and the
cooperative and competitive mixed co-evolutionary model,
we put forward an adaptive multicascade attribute reduction
algorithm. Its main key steps are described as follows:

Algorithm 3 Key steps of the QMCAM_AR algorithm

1) Create n subpopulations based on the historical per-
formance experience records R, where the i-th sub-popu-
lation S, represents the i-th condition attribute subset AS,.
Represent each co-evolutionary subpopulation position as
binary bit strings of length N, where N is the total number
of attribute subsets. Each bit denotes an attribute, in
which “1” means the corresponding attribute is selected,
while “0” means not selected. Each position string is to
optimize an attribute subset.

2) Let {0, 1}" be the m-dimensional Boolean space and
£ be a mapping from {0, 1}" to the power set 2€ as x, = 1
©a,eé(x), a,eC, i=1,2,...,m.

3) Eq. (7) can be refined as the following constrained
binary optimization object:

F(x) =min(S(x))
s.t. xe{0,1}", )/f(x)(D) =y(D)
Vgeé(x), '}’g(x)\(q)(D) =')’§(x)(D)

4) Use multistate quantum bits to encode Q(t) = {q;,
g ....d\}.q,=16, 16, ]...16,], and encode the posi-
tion of the elitist subpopulation S, into a potential subsolu-
tion of the attribute reduction.

5) Do {Select (AS,CC)

Activate the cooperative and competitive multicas-

cade model according to Algorithm 2.
Optimize attribute subset AS, by subpopulation §,.
Calculate v, (D) and collaborate to form the com-
plete solution.
} While Yew (D) =y(D).

6) Update the quantum rotation angle of subpopulation
S, representative of attribute subset AS, according to Algo-
rithm 1, and mutate them by the predefined probability
P,.
7) Calculate the fitness of the global elitist individuals
D, in S, so as to determine the attribute subset RED and
RED

8) Stop if the halting criterion is not satisfied; other-
wise go to 5) for the next iteration.

9) Output the minimal reduction set RED
global attribute optimization.

and then renew the experience record list R.

min *

for the

min

3 Evaluation Experiments

Several experiments are conducted to evaluate the per-
formance of the QMCAM_AR algorithm. And we compare
it with the representative algorithms, namely CCQGA'',
CCPSO'"®', HEA"".
Visual C ++ 6.0 and implemented on a 2. § GHz machine
running Windows XP with 1 024 MB of main memory.
The relative parameters of the compared algorithms are the

These algorithms are encoded with

same with their respective references. They are tested on
Benchmark functions provided by CEC’2008 special ses-
sion on large scale global optimization'”". Functions f, and
[, are separable, and functions f, and f, are completely non-
separable where interaction exists between any two varia-
bles. Experiments of these functions are conducted on 800-
D. The maximal fitness evaluation number is set to 5 x
10°. Here the four algorithms are all terminated after 1 000
iterations. The parameter « is set to 0.4, and P, is 0.25.
All the results are averaged over 10 independent runs and
the average fitness values are given in Tab. 1.

It can be found that QMCAM_AR has better perform-
ance on the tested set than the other algorithms. Especially
for the nonseparable functions f, and f;, it can pursue bet-
ter near-optimization by self-adaptive decomposition, and
achieve some significant results by avoiding premature
convergence and local optimization efficiently.

Ten UCI machine learning datasets''” are taken to test
the attribute reduction ability of QMCAM_AR. Tab. 2 de-
scribes the experimental results of average iterations and
runtime to obtain the minimal attribute reduction. Except
for Monks and Breast Cancer datasets, the global minimal

Tab.1 Experimental results with 800-D on test functions f; to f,

Function CCQGA CCPSO HEA QMCAM_AR
fi 2.3345x107" 6.908 1 x10 " 1.006 4 x10~" 2.560 8 x 10"
5 6.897 8 x 10? 4.339 8 x 10° 2.237 6 x 10° 1.320 9 x10°
£ 4.435 0 x 10* 1.097 8 x 10° 2.780 3 x 10* 3.970 1 x 10*
fi 3.560 3 x10~° 6.1703x10°" 4.376 6 x107* 1.211 4x107"°
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attribute reduction can be found in less than 60 iterations.
Even for Monks and Breast Cancer, QMCAM_AR also
can find the minimal attribute reduction within 18 s.

Tab.2 Average iterations and runtime to obtain the minimal
attribute reduction

Number of Average Average
Dataset . . . .
attribute iterations runtime/'s
Zoo 43 39 0.89
Heart 23 19 1.12
Lung 46 35 0.73
Sonar 68 29 2.02
Exactly2 32 30 0.83
Letters 53 43 1.59
Monks 209 162 15.12
Mushroom 67 56 1.64
Ionosphere 37 49 1.01
Breast Cancer 323 234 17.23

In addition, we compare QMCAM_AR with two other
attribute reduction and feature selection algorithms,
namely PSORSFS"”" and IDSRSFS'®, on attribute re-
duction error rates when different minimal reduction sets
are obtained. We test three algorithms on the Tic-tac-toe
dataset and the Soybean dataset. Each algorithm is inde-
pendently run 10 times, and the average error rate curves
are shown in Fig. 2.

401

— -+ — PSORSFS
............... IDSRSFS
QMCAM_AR

35

30 \
25 ‘
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Fig.2 Comparison of error rates. (a) Tic-tac-toe; (b) Soybean

Obviously, the QMCAM_AR outperforms the PSORS-
FS and the IDSRSFS on the tested datasets and it usually
uses only very few iteration numbers to obtain the mini-
mal attribute reduction error rate. Since the QMCAM_AR
uses the self-adaptive quantum rotation angle to accelerate
the convergence speed and the cooperative and competi-
tive mixed co-evolutionary multicascade model to adjust
the attribute subsets size and to balance exploration and
exploitation, it has a higher accuracy probability of obtai-
ning a minimum attribute reduction in the limited itera-
tions.

The above experimental results indicate that the QM-
CAM_AR can obtain a better solution set in effectiveness
and efficiency. So it is a more competitive algorithm for
minimum attribute reduction.

4 Conclusion

In this paper, we put forward a novel adaptive multi-
cascade attribute reduction algorithm based on quantum-
inspired cooperative and competitive mixed co-evolution.
The innovation of our research is to propose two new
strategies to find a global optimization solution of attrib-
ute reduction. First, a novel mechanism of the self-adap-
tive quantum rotation angle can accelerate the conver-
gence speed. Secondly, the cooperative and competitive
mixed co-evolutionary multicascade model can decom-
pose the evolutionary attribute species into subpopulations
according to the historical performance experience records
and it can accelerate to obtain a global optimization re-
duction set so as to strengthen the sharing ability of the
elitists’ searching experience. Experimental results dem-
onstrate that the proposed algorithm remarkably outper-
forms some existing algorithms and it has better feasibility
and effectiveness in finding the minimum attribute reduc-
tion.
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